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ABSTRACT
We present OpenFace, our new open-source face recognition system
that approaches state-of-the-art accuracy. Integrating OpenFace with
inter-frame tracking, we build RTFace, a mechanism for denatur-
ing video streams that selectively blurs faces according to specified
policies at full frame rates. This enables privacy management for
live video analytics while providing a secure approach for han-
dling retrospective policy exceptions. Finally, we present a scalable,
privacy-aware architecture for large camera networks using RTFace.

CCS CONCEPTS
•Security and privacy → Domain-specific security and privacy
architectures; Privacy protections; •Computing methodologies
→ Computer vision tasks; •Computer systems organization →
Cloud computing;

KEYWORDS
Privacy Protection, Privacy Mediator, Face Recognition, Cloudlet,
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1 Introduction
Video cameras are ubiquitous today. A recent survey in the U.K.
estimated one surveillance camera in a public space for every 11
people [3]. Despite privacy concerns, there was a 62% positive
response on the Debate.org public opinion web site to the question
“Are video surveillance cameras in public places a good idea?” [10].

If privacy concerns can be satisfactorily addressed, enabling real-
time analytics on video streams from public spaces can be valuable.
Examples abound. In a shopping mall, an alert triggered by detection
of a liquid spill or broken glass can be promptly addressed. An
“amber alert” for a lost or abducted child can trigger real-time face
recognition in parallel on many video streams from public spaces
and help to rapidly locate the child. Real-time activity inferencing
on outdoor camera feeds can detect pedestrians slipping on an icy
sidewalk and trigger corrective measures. Real-time video analytics
can also offer business value, e.g., prompt detection and remedy of
lengthening checkout lines to improve customer satisfaction. Prompt
discovery that shoppers are not lingering at a new window display
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Figure 1: Architecture for Live Video Denaturing and Analytics

may suggest that it is not as appealing as expected, and needs to be
changed soon. Early detection of icy sidewalks benefits the bottom
line of insurance companies, since they underwrite risk.

Live video offers several advantages relative to other sensing
modalities. Most important is its flexibility and open-endedness:
new image and video processing algorithms can be developed to
enhance the information extracted from an existing video stream.
Additionally, video offers high resolution, wide coverage, and low
cost relative to other sensing modalities. The passive nature of video
sensing is especially attractive for public spaces. A participant does
not have to wear a special device, install an app, or do anything
special. He or she merely has to be visible to a camera.

In this paper, we describe a system that offers privacy-aware live
video as an IoT service. Following the lead of Simoens et al. [30],
we use the term denaturing to refer to the process of making video
“safe” from a privacy viewpoint. A denatured video stream is one
whose content has been analyzed to identify potential privacy leaks,
and has been modified to eliminate those leaks. Section 2.1 discusses
the denaturing concept in more detail. A denatured video stream
may be safely released to untrusted video analytics software.

Our prototype focuses on face recognition as the basis of denatur-
ing for two reasons. First, it leads to a compelling proof of concept
because accurate real-time face recognition is a difficult technical
challenge even today. Second, recognition of specific individuals
lies at the heart of many important real-world policies.

Figure 1 illustrates the overall architecture of our system. We use
edge computing rather than cloud computing to perform denaturing
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and video analytics. Edge computing is a nascent model of com-
puting in which small multi-tenant data centers called cloudlets are
located close to IoT devices such as video cameras. Davies et al. [9]
have explained why denaturing on a cloudlet offers greater confi-
dence in privacy enforcement than denaturing in the cloud. They
refer to the software module performing denaturing as a privacy
mediator. Scalability is also improved by performing denaturing and
video analytics on cloudlets: by avoiding transmission of video into
the cloud, ingress bandwidth demand per camera is greatly reduced.

This paper makes the following contributions:

(1) We introduce OpenFace, a new open-source face recognition
algorithm whose accuracy approaches that of the best pro-
prietary algorithms. OpenFace can be trained to recognize a
new face in just a few tenths of a second.

(2) We show how OpenFace can be combined with face tracking
across video frames to implement fast, policy-guided dena-
turing. The resulting denaturing system, called RTFace has a
very low rate of privacy leaks.

(3) We show how RTFace can safely preserve obscured bits to
allow reconstruction under policy-specified conditions such
as a search warrant or an insurance claim.

(4) We discuss extensions and performance considerations in
applying RTFace at enterprise scale.

(5) We present experimental results that validate the speed and
scalability of RTFace.

A video demo of RTFace is at https://youtu.be/gQa8oScFS94.

2 Background and Related Work
2.1 Denaturing
Denaturing involves content-based modification of images or video
frames, guided by a privacy policy. In general, this policy has
to strike a balance between privacy and value. One extreme of
denaturing is a blank video: perfect privacy, but zero value. At the
other extreme is the original video stream. This has the highest value
for video analytics, but also incurs the highest exposure of privacy.
Where to strike this balance is a policy issue, and the answer will
likely vary across individuals and contexts. Consider the shopping
mall example mentioned earlier. In the large area covered by the
mall, there may be tens or hundreds of video cameras deployed.
Since they are all part of a single system that is controlled by the
mall management, mall-wide privacy policies are meaningful. For
example, the mall may implement a default “opt-in” privacy policy
that blurs the faces of all individuals unless they explicitly request
otherwise. While she is in a hair salon, a mall customer might
temporarily opt-in her child so that she can keep an eye on him.
Her smartphone app continuously displays a live video stream with
the child’s face visible, dynamically switching to a newly-optimal
camera as the child wanders about exploring a large toy store.

Although policy and mechanism are ideally disjoint, the mecha-
nism determines the range of enforceable policies. The sophistica-
tion, accuracy, and speed of image processing algorithms is a key
determinant of the mechanism that can be supported for live dena-
turing. Figure 2 shows three examples of denatured video frames.
Figure 2(a) only requires face detection. Once the bounding boxes

(a) (b) (c)

Figure 2: Examples of Denatured Video Frames

of faces have been determined, blurring those pixels is trivial. Fig-
ure 2(b) shows selective, policy-guided blurring of faces. Perhaps
the person whose face is visible is a well-known public figure, with a
lower expectation of privacy. Implementing this policy requires face
recognition, after face detection. This paper focuses on scenarios
such as Figure 2(b). Figure 2(c) is a more aggressively denatured
version of Figure 2(b) because even the landmark which gives the
location of image capture has been obscured. This requires object
recognition of well-known buildings. With the implementation of ap-
propriate landmark detection algorithms (already supported by some
augmented reality applications today), it would be straightforward
to extend our system to support scenarios such as Figure 2(c).

2.2 Content-based Image Privacy
Our work focuses on live video analytics. This forces us to solve the
problem of real-time video denaturing at full frame rate. Although
implementation is less challenging if video analytics is done offline
and/or on a sample of the input data, the examples given earlier
caution against oversimplification. For instance, activity inferencing
to detect people slipping on ice is reliable at full frame rate, but is
less reliable on a low-frequency sample. Doing the analytics offline
will not help to avoid impending accidents.

Image privacy based on offline or sampled data has been the sub-
ject of many recent papers. Simoens et al. [30] describe an approach
in which denaturing is performed on a low-frequency sample of
video frames. Aditya et al. [1] perform selective face denaturing
using DNN-based person recognition that combines facial features
with hairstyle and context information. However, even with GPUs
on mobile devices, they still require many seconds per image. Bo et
al. [5] describe a reversible obfuscation scheme for denaturing faces.
However, the work requires users to wear clothes with a printed bar-
code and does not run in the real-time. Raval et al. [27] use tracking
to selectively block objects physically or virtually tagged by users at
near real time on mobile devices. Automated recognition and policy-
based denaturing, as enabled by our work, are not supported. Jana et
al. [15] investigate video transformations that preserve privacy, yet
allow many vision processing algorithms to still work.

Previous works [11] [24] on de-identification study effective im-
age modifications to preserve the anonymity of people from face
recognition software. They assume the locations of faces in an im-
age are known. Different from de-identification studies, our work
explores how to automatically identify areas of interest in an ac-
curate and timely fashion. We adopt a conservative scheme of de-
identification by changing the color of all sensitive pixels to black.
Advanced de-identification methods can be combined with our work.
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2.3 Face Recognition
Face recognition has been an active research topic since the early
1970s [18]. Although recognizing a human face can be viewed as
a special case of object recognition, challenges arise because the
face is not a rigid object and the recognition process needs to be
robust with respect to variations such as aging, facial expression,
makeup, and hair styling [16]. For many decades, progress in face
recognition was slow. Jafri and Arabnia [14] provide a comprehen-
sive survey of this evolution, identifying landmark systems such as
Eigenfaces (1991) [34] and Fisherfaces (1997) [4].

Only since 2012, with the adoption of techniques based on deep
convolutional neural networks (DNN), has progress on face recog-
nition accelerated. Facebook’s DeepFace (2014) [32] and Google’s
FaceNet (2015) [29] achieve significant improvements over tradi-
tional approaches and yield near-human accuracy today. Unfortu-
nately, these DNN-based systems are trained with private datasets
containing millions of proprietary images from social media prod-
ucts. These datasets are one to two orders of magnitude larger than
publicly-available datasets of labeled human faces. Further, the face
recognition implementations are not directly accessible to the public.
Hence, we have been forced to develop our own DNN-based face
recognition system as described in the next section.

3 OpenFace
Humans are exquisitely accurate and fast in recognizing the faces
of other humans. In a typical workday involving encounters with
hundreds of individuals, we may not make a single mistake in face
recognition. We can also learn new faces from very brief encounters.
Ramon et al. [26] found that it takes a normal human about 370 ms
to recognize a face as familiar, and around 620 ms to realize a face
is unfamiliar. For full recognition of the identity of a face, Kampf et
al. [17] found that normal humans take about 1000 ms. OpenFace is
inspired by human accuracy and speed, and approaches the state-of-
art accuracy of DeepFace and FaceNet.

3.1 Training and Classification
To obtain high accuracy and speed, OpenFace uses DNN-based
feature extraction followed by classification using an SVM (support
vector machine). Figure 3 shows the steps involved in recognizing
faces in a video frame. The first step is to identify the bounding boxes
of faces in the frame using the standard Dlib face detector [20].
Each detected face is then processed independently. Since the face
may be oriented in an arbitrary direction, the 2D affine transform
shown in Figure 4 is used to normalize its pose. The normalized
face is fed to a pre-trained DNN, whose output is a 128-element
feature vector that uniquely characterizes each face. We then feed
this feature vector to a linear SVM classifier of known faces to
produce a single identity and a confidence estimate.

We train the DNN for feature extraction with roughly 500,000 la-
beled images obtained by combining the publicly-available CASIA-
WebFace [35] and FaceScrub [25] datasets. This DNN uses a mod-
ified version of FaceNet’s nn4 network, which is itself based on
the GoogLeNet [31] architecture. Our modifications produce a vari-
ant with fewer parameters for our smaller dataset. Table 1 details
OpenFace’s network structure. The network in total has 3.7 million
parameters. Each row is a layer in the neural network and the last six

Figure 3: Face Recognition Steps Figure 4: Normalization

Figure 5: Embedding on Unit Hypersphere

columns indicate the parameters of pooling or the inception layers
from [31]. Dimensionality reductions to N dimensions after pooling
is denoted with “Np”. The OpenFace DNN can be implemented on
any deep learning framework. We used Torch [7] because it had most
of the features we needed, for instance the inception layer. Torch also
enables us to run the DNN on both CPUs and GPUs. The training
procedure uses a triplet loss function that results in an embedding
of images on the unit hypersphere producing 128-element normal-
ized feature vectors, with Euclidean distance representing similarity
(Figure 5). We map unique images into triplets, and the gradient of
the triplet loss is backpropagated back through the mapping to the
unique images (Figure 6).

In each mini-batch, we sample at most P images per person from
Q people in the dataset and send all M ≈ PQ images through the
network in a single forward pass on a GPU to get M feature vectors.
We currently use P = 20 and Q = 15, for an NVDIA Tesla K40 GPU
with 12 GB of memory. We take all anchor-positive pairs to obtain
Q
(P
2
)

triplets, compute their triplet losses, and map the derivatives
through a backwards network pass to the original images. Training
on our dataset takes roughly 48 hours on a system with an 8-core
Intel® Xeon® E5-1630 v3 processor and the above GPU.

3.2 Accuracy and Performance
The simplest recognition task is to say whether a pair of images are of
the same person. Figure 7 compares the ROC curve of OpenFace on
this task to previously-published DeepFace results on the restricted
protocol of the LFW benchmark dataset [12]. The ROC curve of
FaceNet has not been published, but is inferred to be similar to
DeepFace. The labels give the area under the curve (AUC) figure
for each classifier. The OpenFace AUC of 0.973 approaches that of
humans (0.995) and DeepFace (0.997). It is a major improvement on
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Layer Type Output Size #1×1 #3×3
reduce

#3×3 #5×5
reduce

#5×5 pool proj

1 conv1 (7 × 7 × 3,2) 48 × 48 × 64
2 max pool + norm 24 × 24 × 64 m 3 × 3, 2
3 inception (2) 24 × 24 × 192 64 192
4 norm + max pool 12 × 12 × 192 m 3 × 3, 2
5 inception (3a) 12 × 12 × 256 64 96 128 16 32 m, 32p
6 inception (3b) 12 × 12 × 320 64 96 128 32 64 `2, 64p
7 inception (3c) 6 × 6 × 640 128 256,2 32 64,2 m 3 × 3, 2
8 inception (4a) 6 × 6 × 640 256 96 192 32 64 `2, 128p
9 inception (4e) 3 × 3 × 1024 160 256,2 64 128,2 m 3 × 3, 2

10 inception (5a) 3 × 3 × 736 256 96 384 `2, 96p
11 inception (5b) 3 × 3 × 736 256 96 384 m, 96p
12 avg pool 736
13 linear 128
14 `2 normalization 128

Table 1: The OpenFace nn4.small2 Deep Neural Network Definition

Figure 6: Training Procedure

Figure 7: Face Recognition Accuracy (ROC) on LFW Benchmark

OpenBR (0.828) and Eigenfaces (0.648), which are two widely-used
open source face recognizers. The curves labeled “OpenFace folds”
shows the observed variation when different random subsets of the
LFW dataset are used for training and testing.

On specific tasks below, we compare OpenFace to Eigenfaces [34],
Fisherfaces [4], and LBPH [2]. Comparison on these tasks with
DeepFace and FaceNet are not possible because those algorithms
are not publicly available for experiments.

Figure 8: Identification Accuracy on LFW Benchmark

Figure 9: Training Time for New Faces

Figure 10: Recognition Speed
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Identification of Faces: Implementing a face-based denaturing pol-
icy requires a face to be identified as a specific member of a col-
lection of known faces. This is a different classification task from
above, where the goal was only to state if two faces are the same.
The task becomes harder as the number of faces in the collection
increases. Figure 8 shows that OpenFace has the highest accuracy
by a large margin, and its accuracy falls off slowly as the number of
faces increases from 10 to 100. While Openface can be used to rec-
ognize more faces, we are unable to report a larger scale evaluation
due to the limitations of the LFW dataset.

Incremental Training for New Faces: Once the DNN has been
trained as described in Section 3.1, adding a new identity only
requires the SVM classifier (last step of Figure 3) to be retrained.
The time for this depends on the total number of known identities.
As shown in Figure 9, this takes well below one second even for
a collection size of 100 known faces. The figure also shows that
OpenFace is much faster and more scalable than the alternatives.

Recognition Speed for a Single Face: Figure 10 compares the
speed of OpenFace in a recognition task to the alternatives, using
the same hardware mentioned in Section 3.1. The figure shows that
recognition speed is roughly 80 ms without a GPU, dropping to
roughly 20 ms with a high-end GPU. The recognition speed does
not depend on the size of face collection. Relative to the alternatives,
the superior accuracy of OpenFace comes at a significant price in
terms of speed. Relative to the human speeds (many hundreds of
milliseconds) [17] [26], OpenFace is clearly competitive.

4 Denaturing at Full Frame Rate
Our goal is to match human accuracy while meeting the speed
requirements for live video. In contrast to human speed, denaturing
a sequence of video frames at 30 fps only allows about 33 ms per
frame. Hence, face recognition for denaturing has to be one to
two orders of magnitude faster than human performance, while
preserving near-human accuracy. The challenge increases if there
are many faces to be recognized in each frame.

4.1 Denaturing without Tracking
Figure 11 illustrates a simple pipeline for denaturing. After video
decoding, a face detection algorithm is run to find a bounding box
around each face in the frame. These faces may be at any scale,
from a tiny face in the distance to a large face that fills most of the
frame. The best face detectors available today are scale invariant,
but they are sensitive to the orientation. Detection of frontal faces
is most reliable, while detection of faces in profile is significantly
less reliable. After face detection, each bounding box is presented to
OpenFace for recognition. Within the limits of available hardware
resources, OpenFace can use coarse-grain parallelism to concurrently
work on multiple bounding boxes in the recognition step. Finally, the
bits within the bounding boxes are selectively modified according
to an identity-specific denaturing policy. If an opt-in policy for
revealing faces is used, any unrecognized face is obscured. If an
opt-out policy is used, those faces remain visible. Before modifying
a bounding box, its original bits are encrypted and then saved on
a virtual disk within the privacy mediator VM. The purpose and
details of this step are discussed in Section 6. The denatured frame
is then released for video analytics.

Figure 11: Simple Denaturing Pipeline

Operation Speed
OpenFace w/o GPU 30 (0.1) ms per face
Dlib face detection 127 (1) ms per frame
Dlib face tracking 7.6 (0.1) ms per bounding box
Perceptual hashing 0.3 (0.1) ms per bounding box

Processing speed in a VM running on a 4-core Intel® Core™ i7-4790
processor @3.6 GHz with Hyper-Threading, and no GPU. The reported
performance is averaged over 3 runs across 100 images with resolution
1280x720. Numbers in parentheses are standard deviations. Note that
the time for OpenFace here cannot be directly compared to the value in
Figure 10 because the hardware and linked shared libraries are different.

Table 2: Speeds of Critical Operations

Unfortunately, the simple denaturing pipeline in Figure 11 is
unable to achieve adequate speed. Assuming that the time for the
third step (interpreting policy and obscuring bits) is negligible, the
best-case latency of the pipeline is the sum of the first two steps:
face detection time on a frame, plus the slowest face recognition in
a set of parallel recognitions. Table 2 shows the measured speed of
face detection and recognition on our denaturing hardware. With
these speeds, the pipeline of Figure 11 is clearly too slow. The sum
of Dlib face detection and one face recognition is over 150 ms, far
exceeding our budget of 33 ms. Using a GPU does not help to speed
up face detection — it only speeds up face recognition.

4.2 Combining Recognition with Tracking
To speed up the denaturing pipeline, we build on the insight that face
motion between two successive frames is likely to be small. Even
at athletic speeds, human motion is slow enough that translations
and rotations of a face in successive frames are likely to involve
changes only to a proximal region of pixels. We leverage this insight
by combining initial detection and recognition of faces, followed
by tracking of those faces. Fast object tracking algorithms that are
an order of magnitude faster than face detection and recognition
have been extensively discussed in the computer vision literature.
We use tracking to eliminate face detection and recognition from
the timing-critical path of denaturing. Note that this is a different
goal and usage context from the use of object tracking described by
Chen et al. [6]. There, the goal is to reduce computational load on a
mobile device by offloading the expensive object recognition step to
a cloudlet and only performing the cheaper object tracking on the
mobile device.

Object tracking initializes with an image and a bounding box from
that image. It outputs an updated bounding box for the subsequent
frame. We use a tracking-by-detection algorithm from Dannelljan
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Figure 12: RTFace: Denaturing Pipeline with Recognition and Tracking

et al. [8] known for its robustness. The Dlib implementation takes
7.6 ms per frame on the denaturing hardware of Table 2.

Unfortunately, tracking is imperfect and significant drift can accu-
mulate across many frames between the predicted and real locations
of a face. In addition, a new face may only become detectable for
the very first time in a particular frame even though it was present
in earlier frames. These effects can lead to privacy leaks, in which
a face that should be obscured is, instead, visible in the denatured
video stream. As discussed in Section 5, we reduce privacy leaks
by revalidating frames before release and conservatively biasing
denaturing towards obscuring too much rather than too little.

4.3 RTFace: Revised Denaturing Pipeline
Figure 12 shows a denaturing pipeline called RTFace that combines
face recognition and face tracking. When a video frame arrives, the
dispatcher module decides whether it needs to be sent to the face
detection module. Regardless of that decision, the frame is passed
on to the tracker module. If there are previously-detected faces in the
frame, the tracker updates their locations. The frame is then placed
in a frame revisit buffer (FRB) that adds a minimum delay before
denaturing. Since the FRB is passive, its presence only adds latency
to the pipeline without affecting its throughput.

During the wait in the FRB, the tracker has an opportunity to cor-
rect tracking and detection errors by using new information received
asynchronously from the detection module. This information may
apply to any of the frames in the FRB. The tracking algorithm is
applied to correct frames in the FRB using both forward tracking and
backward tracking. The reason for backward tracking is that the ini-
tial detection of a face in a frame may be presaged by many previous
frames in which a superior detector (such a human observer) may
be able to detect that face. This would correspond to a privacy leak.
The finite size of the FRB limits the amount of correction possible.
In our experience, a size of 30 frames has proved adequate. In other
words, the denatured stream is delayed by one second to allow for
correction. Merging updates from asynchronous face detection and
recognition into tracking requires careful bookkeeping. Since the
location of a face in a frame may change due to physical motion, we
use a unique id to label each bounding box and to track its progress.

The speed of the tracker and dispatcher determine the achievable
throughput of the pipeline. The speed of the detection module does
not affect throughput — it only affects the ability to eliminate privacy
leaks. Very slow detection increases the chances of an undetected
privacy leak on a frame that is released from the FRB.

Figure 13: Tracking Accuracy

4.4 RTFace: Measured Accuracy and Speed
The YouTube Celebrities Face Tracking and Recognition Data-
set [19] has been used by the computer vision community for evalu-
ating tracking accuracy. From this dataset, we use a 10-video subset
of distinct celebrities as the benchmark in our evaluation. The subset
chosen corresponds to those videos on which the Dlib face detector
is most accurate (i.e., misses the least number of faces).

We treat the bounding boxes of faces discovered by Dlib on a
frame as the “ground truth” for that frame. The metric used by
the computer vision community to quantify tracking accuracy is
Intersection over Union (IOU) of a predicted bounding box and its
ground truth bounding box [28]. A face is deemed to have been
tracked accurately if its IOU value is 0.5 or better.

For each frame with faces detected, we create trackers for all
faces and let them run until the end of the video. Figure 13 presents
the tracking accuracy of our prototype as frame distance increases.
These results confirm that the mean IOU remains well above 0.5 even
after 100 frames of tracking. Even the 10-percentile level remains
well above 0.5. These results confirm that tracking is a robust and
safe technique for improving the speed of denaturing.

We use the same benchmark to test overall accuracy and speed,
relative to a detection-only implementation. Using the average of
three runs, our prototype correctly recalls and classifies 92% of
detected faces at a speed of 89 fps. Without tracking, the maximum
sustainable frame rate drops to 12 fps. Since the resolution of the
YouTube Celebrities dataset is only 320x240 or lower, this difference
is understated. With higher resolutions, the speedup of using a
tracking-based pipeline would be higher.
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5 Reducing Privacy Leaks
Even today, face detection by humans is so much better than soft-
ware, that a few frames with a human-recognizable face can slip by
before RTFace detects a face. Note that this is a problem even with
the simple denaturing pipeline of Figure 11.

5.1 Mitigation Strategies
Tracking and the use of an FRB together help to reduce leaks. A face
detected in a later frame is tracked backwards through the frames
in the FRB. This reduces privacy leaks at the cost of increased false
positives (i.e., a non-existent face is obscured). We use the following
additional techniques to reduce privacy leaks.

Dispatch criteria: The dispatcher in Figure 12 uses two criteria
to decide whether to send a frame for asynchronous detection and
recognition. These are the tracker’s confidence score c, and the num-
ber of frames t since last detection. When the confidence score c is
below a predetermined threshold i, the tracker has drifted too much.
Hence, detection and recognition need to be run in order to correct
the tracker. Independently, running face detection periodically re-
duces tracking error and also reduces the latency for discovering
new faces that enter camera view or old faces that disapper. Our
experiments also indicate that image-dependent factors such as the
blurriness of an image can affect tracking performance.

Detection bias: Denaturing errors should be biased towards too
much privacy rather than too little. False positives (detection of
a non-existent face, or non-recognition of a face that may be left
unobscured according to current policy) are more benign than false
negatives (missing a face and hence failing to obscure it, assuming
an opt-in policy). We therefore tune the face detector in Figure 12
to a relatively low threshold for face detection. This may result in
many non-faces being presented to OpenFace for recognition, but
this is harmless because the result is typically “unknown person.”

Rapid update tracking: Though detection and recognition no long-
er reduce throughput, their speed does influence the incidence of
privacy leaks. We can further reduce privacy leaks by decoupling
detection from recognition, and by obscuring a new face as soon
as it is detected. After recognition, it may become apparent that
the face should have been left unobscured. This correction can be
applied to all the frames in the FRB, but it may be too late for some
earlier frames that have already been released. Although this error is
conservative (i.e., no faces are revealed that should not have been),
we would like reduce its incidence. To this end, we use perceptual
hashing [21, 22] as a fast but weak approximation to face recognition.
If the perceptual hash of the new bounding box is very similar to that
of an earlier one, we temporarily use the identity of the latter face.
If there are no matches, the identity is assumed to be an unknown
face. Once recognition completes, the identity of the face in the new
bounding box is known with much higher confidence. Comparison
using a perceptual hash is safe: it may indicate that two faces are
different when they are really the same, but the reverse is extremely
unlikely. We are opportunistically exploiting a form of temporal
locality here: over a short duration, a person’s image may appear
identical across several frames (same lighting conditions, same pose,
same makeup, same emotional state, etc.) – perceptual hashing is a
computationally cheap mechanism to catch these instances.

5.2 Non-Frontal Faces
In contrast to humans, who excel at detecting and recognizing faces
at all angles, software face detection and recognition perform best in
frontal view. As a result, it is possible for profile or near-profile faces
to be missed by the denaturing pipeline. The 2D affine transform
shown in Figure 4 helps with recognition, but not with the prior step
of detection. The use of an FRB with backward tracking, helps in
some instances of this problem. However, if a face remains in profile
for many frames before turning frontal, its detection may come too
late to correct the earliest frames. Improving the accuracy of profile
face detectors would be valuable.

6 Controlled Reversal of Denaturing
There are occasions when public safety or other societally impor-
tant considerations override privacy considerations. For example,
the crucial clues in identifying the perpetrators of the 2013 Boston
Marathon terrorist attack were obtained from surveillance cameras.
If a denaturing system such as RTFace had been used in that set-
ting, it would have been necessary to reverse the denaturing of the
archived video. Most democratic societies have well-established
procedures for obtaining policy exceptions (e.g., search warrants)
in such situations. In the context of denaturing, there are many
important policy questions pertaining to who can request reversal
of denaturing, who can authorize it, how broad the authorization
should be, how freely the original data can be released after reversal,
etc. A reversal mechanism is needed that can support a plausible
range of policies.

Figures 14 illustrates such a mechanism, with the numbered ar-
rows referring to calls in the API shown in Figure 15. All policy-
related aspects are encapsulated into the system-wide entity labeled
“Trusted External Authority” (TEA). All network communication
takes place over secure, authenticated TCP connections using stan-
dard TLS technology. Encryption of obscured bits in the mediator
is based on private key encryption (AES-128) using a random key
generated and escrowed by the TEA. Each key has a finite lifetime,
whose duration is determined by TEA policy. In practice, we expect
lifetimes of a few hours to be likely. As a key’s expiry time ap-
proaches, the mediator requests the TEA for a new key using the first
call in Figure 15. A mediator does not retain old keys. If cloudlet
security is compromised, only the most recently denatured video is
at risk of exposure. The keys needed to reverse denaturing of older
archived video is only available from the TEA.

If a need arises to reverse the denaturing on old video, a policy
exception credential is first obtained for the desired video stream
(identified by the ID of its mediator) and time period. We leave
unspecified the format of this credential and the procedure to obtain
it — these are clearly important specifications that will need to be
completed in any deployment of this system. Using the second call
in Figure 15, an external requestor can present the policy exception
credential to the TEA. Using the video stream id and timestamp
information authorized by this credential, the TEA retrieves relevant
escrowed keys. It then makes a series of ReverseDenature calls (third
call in Figure 15) to the specified mediator. The mediator uses times-
tamp information to locate the relevant encrypted bounding boxes,
decrypts them using the key provided to obtain bit-exact copies of
the removed regions, and then applies them to the relevant segment
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Figure 15: API to Enable Reversal of Denaturing

of archived denatured video. This lets the mediator reconstruct the
original video segment modulo any compression artifacts. If the
archived video segment or encrypted bounding boxes have been
purged by the storage retention policy of the cloudlet, the reverse
denaturing request will fail. The TEA reassembles the segments
returned by the mediator into the original video for the specified
time period, and returns it to the requestor.

7 IoT Service Deployment at Enterprise Scale
The decreasing costs of cameras and computation devices have
enabled large-scale deployments of IoT cameras in places such
as schools, company workspaces, and public streets. Although
live analysis of video streams from such always-on cameras can
provide many societal benefits, legitimate concerns over privacy
and misuse of video data pose a significant obstacle to acceptance
of such systems. Based on OpenFace and RTFace, we propose an
architecture for a large-scale, privacy-aware IoT deployment that
allows real-time analytics while incorporating privacy mediation.
We have implemented a prototype of our proposed design.

Figure 16 demonstrates our design with four example cameras. It
shows all components and communications for the leftmost camera.
Solid arrows in the figure represent the data (blue solid arrows)
and control (gold solid arrows) flows when a user comes into the
range of a camera. Dashed arrows represent the offline registration
steps. We assume RGB static and moving cameras. Techniques
including image stabilization and deblurring can be used to mitigate
the negative influences of a moving camera. The main components
and operations are detailed below.

Privacy Mediator VM: In our system, there is one privacy mediator
VM associated with each camera. This VM’s primary task is to
perform selective denaturing of the video before it is stored or made
available for analytics, and implements the architecture as shown in
Figure 1 using RTFace as the denaturing algorithm. Privacy mediator
VMs run on cloudlets located near the cameras, typically connected
by high-bandwidth, wired networks. A cloudlet may host multiple
privacy mediator VMs. Furthermore, depending on the size of the
deployment, there can be multiple cloudlets each serving multiple
cameras in an area.

Centralized Information Repository: Our system implements a
centralized database, called the IoT Resource Registry (IRR) [33],
to track the state of the system components. It contains the locations
and status of each camera and associated privacy mediator VM in
the system. The privacy mediator VMs register themselves to the
IRR when they are deployed, and report regularly on the status of
the associated camera streams. This information can be used for
maintenance and to restart VMs or cameras in case of failures. Fur-
thermore, the IRR keeps a directory of the various analytic services
available on each stream, as well as the applicable privacy policies
and details about any available privacy settings associated with each
stream. In the context of this paper, such a policy specification would
for instance indicate whether a video stream supports a setting that
enables an individual to opt-out of face denaturing, and information
on how to adjust the settings at the privacy mediator VM. Note that
the IRR itself does not handle, process, or store any video data, nor
the users’ privacy settings; rather it stores only the metadata used to
describe and control the distributed set of components in the system.
In our prototype, the IRR also plays the role of the TEA in Figure 14.
In a full-scale deployment, this role would likely be separated out
into a separate component.

Camera Setup: Cameras in this system are assumed to connect
through a high-bandwidth, wired network. Each is configured to
continuously generate and send a compressed video stream to only
its associated privacy mediator VM. A bluetooth low energy (BLE)
beacon is co-located with each camera to broadcast camera-specific
information. This serves two purposes. First, it acts as an electronic
sign informing individuals in the vicinity that video is being captured
in the area. This beacon can be received by any modern smartphone
or wearable device that supports BLE. Secondly, the beacon includes
information about the camera and the IRR responsible for the par-
ticular camera network. This acts as a simple discovery mechanism
independent of any external coordination or accurate localization,
and allows many different camera networks to operate in overlapping
regions. Finally, the range of the BLE beacon is typically a few tens
of meters, so it is similar to the viewing range of typical outdoor
surveillance cameras, and can serve as a means to determine which
cameras may observe the user.

IoT Assistant (IoTA): Individuals who wish to set and manage
their privacy settings need to run a client-side agent, called the IoT
Assistant (IoTA) [33], on a personal device that they carry. Our
current implementation is Android-based, and can run on many
smartphones as well as wearable devices. The IoTA receives the
camera BLE beacons and communicates to the appropriate IRR to
discover available privacy settings and the corresponding mediator
VMs. It can then automatically set the user’s privacy settings at
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Figure 17: IoTA App Screenshot Figure 18: Training Website

the privacy mediator for the camera. Users can selectively allow
their faces to be visible in the particular camera stream or camera
network to benefit from live video analytics. In addition, if desired,
the IoTA can also alert the user when near active cameras. Thus, it
serves to inform the user of video capture and provide a means of
control. Note that the use of the IoTA is optional – the default policy
of the privacy mediator VMs is to blur all faces, thereby preserving
privacy of all individuals. So by using the IoTA, users “opt-in” to the
selective denaturing of their faces based on their specified settings.
A screenshot of IoTA is shown in Figure 17.

Runtime Workflow: When a user comes into the proximity of
a video camera, the IoTA receives the camera BLE beacon that

identifies the camera, camera network, and IRR. The IoTA retrieves
camera- and network-specific privacy policies from IRR. It then
selectively alerts the user if desired, or if the user has not set privacy
preferences that cover the particular camera. User-specified privacy
policies are then sent to the privacy mediator associated with the
camera. In addition, the IoTA periodically sends heartbeat messages
to indicate the continued presence of the user near the camera. At the
privacy mediator, these heartbeat messages are used to narrow down
the search space of OpenFace face recognition. Upon receiving
the first heartbeat message of a new user, the privacy mediator VM
retrieves and caches the 128-dimensional feature vectors for the
user’s face from a global database. It then quickly trains a linear
SVM using the feature vectors of all nearby users, as indicated
by recent heartbeat messages. As discussed in Figure 9, training
a linear SVM takes less than 0.1 seconds for 50 people. After
a sufficient timeout interval, feature vectors that have not had a
heartbeat message are removed from the set used for training, thereby
keeping the SVM small and manageable. The privacy mediator VM
performs denaturing on the video stream using RTFace as described
in Section 4. The denatured video is then presented to video analytics
VMs on the cloudlet.

Training: Before a user can specify a privacy preference, his face
needs to be recognizable by the system. OpenFace achieves the
accuracy shown in Figure 8 by using just 20 training images per
person. At a frame rate of 30 FPS, a few seconds of video at different
face angles can provide more than enough training data.

We have implemented a prototype face training website to which
users can stream a short video for training, as shown in Figure 18.
The website front-end accesses the device camera using HTML5
support in the browser, and transmits captured frames through the se-
cure Websocket protocol. For each face detected in training images,
the training web server extracts a 128-dimensional feature vector
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using OpenFace and stores them into a global database. At runtime,
these feature vectors are retrieved by the privacy mediator VM when
a user enters into the range of a camera.

Note that a complete deployed system for training and storing
feature vectors will need to address a few additional security con-
cerns. Most importantly, requests for a feature vector from an IoTA
need to be properly authenticated and authorized. This can be im-
plemented using standard SSL/TLS based user authentication and
access control lists. For example, this could allow a user to set his
own privacy settings and those of his children as well. In addition, at
training time, there needs to be some external means of ensuring that
the video clip uploaded is really that of the user. This is a standard
bootstrapping requirement of biometric authentication mechanisms.

8 Scalability and Design Choices
Scalability is critical for handling a large number of IoT cameras.
Under the constraints of network and computational resources, the
system needs to scale well with respect to the number of users, as
well as the quantity and quality of cameras.

The use of cloudlets and the design of RTFace both contribute
to system scalability. Cloudlets, sitting at the edge of the Internet,
reduce the amount of data that needs to be sent to the cloud for
analysis. RTFace significantly reduces the computation needed for
denaturing a video stream by combining face recognition and face
tracking. In this section, we first explore the scalability with respect
to users. Then, based on experimental data, we offer design recom-
mendations for the computational and networking requirements of
cloudlets as a function of the quantity and quality of cameras.

8.1 Number of Users
Denaturing faces from a large pool of users poses challenges to
both the accuracy and speed of the system. Figure 8 demonstrates
that OpenFace performs reasonably well for a search space of 100
people. For a large scale camera deployment, such as a city-wide
deployment, the entire set of individuals to be recognized from can
be much larger. However, despite the large user population in total,
the number of faces a single camera would capture at a particular
time is usually small. Therefore, as described in Section 7, we use
a beaconing mechanism to limit the search space for each camera.
Only the face feature vectors of individuals within the beacon radius
are included in the camera’s SVM classifier. Furthermore, OpenFace
uses linear SVMs of low complexity. Although execution time is
typically quadratic to the number of classes, as shown in Figure 10,
the increase in prediction time from 10 people to 100 people is small
relative to the execution time of the neural network. This beaconing
mechanism does require the SVMs to be retrained as users enter and
leave the range of the camera. However, as we see in Figure 9, this
requires only a few tenths of a second even for 100 users.

First, we explore the maximum processing speed when allocating
one core per camera. We use 2300 frames from a 1920x1080 (HD)
video that contains multiple faces as test input. There are twenty
people in the system. At most 5 people are present in a single frame.
To focus on processing speed, we load all frames into memory first,
and then record the compute time to process them. Figure 19 shows
the average processing time different methods can achieve when
running on a 1-core 3 GB RAM VM. The figure compares RTFace
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Resolution RTFace Processing Time
(pixel) (ms)
1920x1080 (HD) 48.7 (0.01)

3840x2160 (4K) 64.6 (0.01)

Figures in parentheses are standard deviations across 3 runs.

Table 3: Impact of Frame Resolution on 1-core Processing Speed

Resolution Decoding Time
(pixel) (ms)
1920x1080 (HD) 20.4 (1.8)

3840x2160 (4K) 85.4 (1.9)

Figures in parentheses are standard deviations across 3 runs.

Table 4: Impact of Frame Resolution on 1-core Decoding Speed

with Baseline (running recognition on every frame) and Downsam-
ple (downsampling frames before detection). Downsampling high
resolution frames is often used to improve speed at the cost of ac-
curacy. In our Downsample experiments, we downsample frames
to 480x360, a low resolution at which the face detector still detects
most faces. Figure 19 shows that RTFace can run at 5 times the speed
of Downsample, and 8 times that of Baseline. The 48.7 ms process-
ing time for RTFace indicates it can sustain a speed of slightly over
20 FPS at HD resolution, if we allocate only one core per camera.

8.2 Quantity and Quality of Cameras
Next, we investigate how RTFace performs in a multi-core, multi-
stream scenario. Using the same 4-core cloudlet described in Sec-
tion 4.4, we concurrently process 2, 4, 8, and 16 video streams. The
input video stream is the same as that described above. Figure 20
compares the average frame rate per stream as the number of video
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Video Resolution
Target 1080p (HD) 2160p (4K)

Network Utilization Streams Cores Streams Cores
10% 20 42 4 18
30% 60 126 12 54
70% 140 294 28 126
100% 200 420 40 180

(a) Software Decoding

Video Resolution
Target 1080p (HD) 2160p (4K)

Network Utilization Streams Cores Streams Cores
10% 20 32 4 10
30% 60 96 12 29
70% 140 224 28 68
100% 200 320 40 96

(b) Hardware Decoding
Note that a dense deployment of video cameras could result in 100
cameras or more in a large multi-storey office building. In such a
building, these numbers suggest a deployment scenario with multiple
LAN segments and a cloudlet per segment.

Table 5: Network and Cloudlet Sizing for 1 Gbps LAN

streams grows. RTFace consistently performs an order of magnitude
better than running detection and recognition on every frame, even if
the frames are downsampled. Other than the two-stream case, which
did not fully utilize all cores, the frame rates achieved are consistent
with a linear extrapolation from the single core data.

Video resolution can also significantly impact compute time. Ta-
ble 3 compares RTFace’s processing speed on a single core for 4K
and HD images. Higher resolutions affect computation times for
face detection in particular. On the other hand, since recognition is
applied to faces scaled to a standard resolution, it does not affect
recognition. Thus, RTFace takes longer on higher resolutions but
not as much as one might exepct.

As cameras produce compressed video streams, the complete
video pipeline involves both decoding and denaturing. Table 4
presents the software decoding times for different resolutions on
a single core. Together with data shown in Table 3, a complete
pipeline for HD images would take 69.1 ms. Using the approximate
linear scaling inferred from Figure 20, an HD video stream needs
2.1 cores to achieve 30 FPS. A 4K video stream needs 4.5 cores.
Hardware decoders can be used to reduce the software workload.
Data from hardware decoders in standard desktop platforms [13],
show that up to 25 HD streams or 4 4K streams at 25 FPS can be
decoded on a quad-core Intel® Core™ i7 processor at 40% CPU
utilization. Therefore, for 30 FPS video streams, with hardware
decoders, an HD stream needs 0.1 core and a 4K stream needs 0.5
cores for decoding. The complete denaturing pipeline would require
1.6 cores per HD stream, or 2.4 cores per 4K stream.

8.3 Balanced LAN and Cloudlet Design
In addition to computation as a bottleneck, continuously streaming
videos from many cameras also requires high bandwidth in the com-
munication network. With a cloud-based centralized design, both the
ingress bandwidth into the cloud infrastracture and the metro-area

aggregation network can become bottlenecks. By July 2015, 6.7
hours of video were being uploaded to YouTube each second [36].
The cumulative upload bandwidth of these videos is equivalent to
only 24,120 cameras simultaneously streaming HD videos. This is
two orders of magnitude smaller than the estimated 5.9 million secu-
rity cameras in the UK in 2013 [3]. Netflix recommends 25 Mbps
bandwidth for streaming 4K videos [23]. At that data rate, 100
buildings with 100 cameras each will need a 250 Gbps aggregation
network to a metro-wide cloudlet. More decentralization, using a
cloudlet in each building or cluster of buildings, can significantly
reduce the demand on a metropolitan area network. With denaturing
and video analytics occurring close to cameras, only a small amount
of distilled information needs to be transmitted further.

In designing the LAN segments for a single building or small clus-
ter of buildings, a key parameter is the level of network utilization.
On a contention-based network such as Ethernet, high planned uti-
lization is not recommended. The performance of non-video traffic
(such as Web traffic, interactive traffic, and VoIP) are likely to suffer
as network utilization rises due to continuous video transmission.

Table 5 illustrates the relationship between targeted network uti-
lization, camera resolution, and the number of cameras per 1 Gbps
LAN segment. The number of cameras, the resolution, and whether
hardware decoding is used, together determine the number of cores
needed in the cloudlet associated with that LAN segment. For ex-
ample, a LAN segment with a target utilization of 10% can support
up to 20 HD cameras or 4 4K cameras. The cloudlet on that LAN
segment would need 42 cores for the HD cameras, or 18 cores for
the 4K cameras. As the target LAN utilization rises, so does the
number of cameras and cores per cloudlet. The figures for 100%
utilization are not achievable in practice, and are only shown for
reference. Of course, the dispersal of cloudlets complicates system
management. This is an important problem that will have to be ad-
dressed through the development of appropriate system management
tools and techniques.

9 Conclusion
This is the first work to show that enforcement of privacy poli-
cies based on recognition of individuals is feasible in real time
on streamed video. We present OpenFace, an open-source face
recognizer whose accuracy approaches that of the best available
proprietary recognizers. We show that we can combine OpenFace
with face tracking to maintain high accuracy yet achieve full frame
rate speeds. We describe a privacy mediator that is fast, accurate,
and can reverse denaturing in a principled and secure way to ac-
commodate policy exceptions. Finally, we show how to put these
elements together into a scalable privacy-aware IoT architecture that
enables live video analytics across a large number of cameras.

Real-time information from cameras has the potential to greatly
benefit society, but the rapid proliferation of video cameras in public
spaces raises very real privacy concerns. Implementing systems that
empower individuals to take charge of their privacy will facilitate
the acceptance of widespread cameras and real-time video analytics.
The denaturing mechanism presented here takes a first step towards
this goal. Although our focus has been on face recognition, our work
can be easily generalized to other objects. Beyond video, the broad
principles and implementation strategies developed here are also
relevant to any IoT sensing modality with a high data rate.
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