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ABSTRACT
A well-known bottleneck of contemporary mobile devices is
the inefficient and error-prone touchscreen keyboard. In this
paper, we propose UbiK, an alternative portable text-entry
method that allows user to make keystrokes on conventional
surfaces, e.g., wood desktop. UbiK enables text-input ex-
perience similar to that on a physical keyboard, but it only
requires a keyboard outline printed on the surface or a piece
of paper atop. The core idea is to leverage the microphone
on a mobile device to accurately localize the keystrokes. To
achieve fine-grained, centimeter scale granularity, UbiK ex-
tracts and optimizes the location-dependent multipath fad-
ing features from the audio signals, and takes advantage of
the dual-microphone interface to improve signal diversity.
We implement UbiK as an Android application. Our exper-
iments demonstrate that UbiK is able to achieve above 95%
of localization accuracy. Field trial involving first-time users
shows that UbiK can significantly improve text-entry speed
over current on-screen keyboards.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Input devices and strategies

Keywords
UbiK; mobile text-entry; paper keyboard; acoustic localiza-
tion

1. INTRODUCTION
Despite the increasing sophistication of mobile technology,

interacting with today’s mobile devices can involve painful
contortions. Miniature circuits and displays keep pushing
portable devices to a smaller form factor — down to stamp-
size for emerging wearable computers — but human fingers
and hands do not shrink accordingly. As a result, on-screen
keyboard, a daily part of life for many people, remains as
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an obstacle that prevents the anticipated role switching for
mobile devices from information consumers to providers.

This grand challenge has prompted considerable research
in the field of mobile text entry. Existing work in human
computer interaction addressed the problem by redesigning
keyboard layout [1], adapting key size [2], expanding key-
board area [3,4], etc. However, users are highly resistant to
learning new methods, particularly new keyboard layouts or
key shapes [5]. Projection keyboard [6–8] provides a more
palatable solution for heavy typists, but they require bulky
new hardware to accompany mobile devices, which compro-
mises their portability.

In this paper, we propose UbiK, a new approach to mobile
text input that recognizes keystrokes through fine-grained
localization. UbiK enables PC-like text-entry experience, by
allowing users to click on solid surfaces, and then localizing
the key symbol through the keystroke’s acoustic patterns.
A keyboard outline can be drawn on the surface, or printed
on a piece of paper atop. The keystrokes can be sensed us-
ing microphones that are readily available on today’s mobile
devices. With such simple setup, UbiK can serve as a spon-
taneous and efficient keyboard in a wide range of scenarios,
e.g., on an office desk, conference room table, or an airplane
tray table.

The key challenge for UbiK lies in fine granularity. Inter-
key distance on typical PC keyboard is only around 2 cen-
timeters. Wireless localization, even those requiring user to
carry active radios, can only achieve several feet of granu-
larity [9]. Using microphone arrays, existing sound source
localization algorithms [10] can achieve a few meters of ac-
curacy based on time-difference-of-arrival (TDOA) informa-
tion. Theoretically, sound waves are coherent within their
meters-scale wavelength, and audio sources within this range
are hardly distinguishable. However, this holds only for
point sound source in free-space. Practical clicks on solid
surfaces generate entangled audio waves that undergo com-
plex multipath reflection patterns on the surface and the
body of the mobile device, as they propagate towards the mi-
crophone. Although such patterns worsen the unpredictabil-
ity and compromise accuracy of audio ranging [11], they can
create location-dependent miniature sound signatures, thus
improving the granularity of sound source localization.

To verify the above principle, we use commercial off-the-
shelf (COTS) smartphones to conduct a comprehensive mea-
surement study of acoustic multipath patterns produced by
keystrokes on conventional solid surfaces. We find that fin-
ger clicks on the same spot exhibit highly consistent fading
patterns, due to soundwave reflections cancelling or strength-
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ening each other. Such patterns depend on the sound fre-
quency or wavelength, and can be characterized by the am-
plitude spectrum density (ASD) of the click sound. A more
important observation is that the ASD of different keystroke
locations reveals highly distinguishable profiles and can be
conveniently used as location signatures. The signatures
exhibit a certain level of correlation within a short distance
of several millimeters, but the correlation diminishes mono-
tonically as physical separation increases. Since neighboring
key distance on a PC keyboard is roughly 20 millimeters,
ASD has potential to enable keystroke-level location granu-
larity.

UbiK synthesizes these experimental observations to re-
alize a fine-grained, fingerprinting-based keystroke identifi-
cation system comprised of three key components: detec-
tion, localization and adaptation. We design an online de-
tection algorithm that adapts noise-floor threshold to single
out keystroke signals, and augments motion sensors to iso-
late the impact of bursty interference such as human voices.
We introduce a keystroke localization framework that uses
simple nearest neighbor search for signature matching, while
optimizing the signatures to maximize the feature separation
between keys. In particular, we leverage dual-microphone
interface on typical mobile devices to improve the audio sig-
nal diversity and hence signature diversity. We formulate
an optimization-based solution to cap the frequency range
of the ASD profile, so as to prevent the noisy features from
polluting localization accuracy. In addition, we take advan-
tage of the unique opportunity offered by users’ online feed-
back to calibrate the training signatures and discriminate
their significance.

We build UbiK as a prototype application for Android
devices. Our implementation achieves real-time keystroke
detection and localization without noticeable latency. Our
baseline evaluation demonstrates that UbiK can easily achieve
90+% of localization accuracy, even with 3 training instances
per key and without user calibration. Coupled with its on-
line adaptation, its accuracy quickly escalates to around
95%. UbiK works consistently on a variety of solid sur-
faces and keyboard layouts. An experimental study involv-
ing first-time users show that UbiK maintains high perfor-
mance across different users. UbiK is robust against minor
displacement of the keyboard or mobile devices, and can
rapidly converge to high accuracy after significant distur-
bance. Typing is not as rapid as on a mechanical keyboard
but easily outperforms thumb-operated keyboards.

The main contribution of this paper is to address mobile
text entry problem using a fine-grained keystroke localiza-
tion system. This contribution breaks down into the follow-
ing aspects:

• We provide measurement based evidence that verifies
the feasibility of fine-grained, centimeter scale click
sound localization using acoustic multipath signatures.

• We design UbiK, a practical framework that optimizes
the location signatures and enables detection/localization
of keystrokes on solid surfaces and in real-world envi-
ronment.

• We implement UbiK as an efficient application running
on COTS Android devices, and further validate UbiK’s
performance through comprehensive micro-benchmark
tests and users’ field trials.

Figure 1: A typical use case of UbiK.

The remainder of this paper is structured as follows. Sec-
tion 2 presents an overview of the operations, architectures
and design objectives underlying UbiK. Section 3 elaborates
on our feasibility study of UbiK and verifies the premises
behind it. Then, Sections 4, 5 and 6 describe UbiK’s main
modules in detail. Section 7 presents our implementation of
UbiK on Android, followed by a comprehensive experimen-
tal evaluation in Section 8. We discuss UbiK’s limitations
in Section 9 and related work in Section 10. Finally, Section
11 concludes the paper.

2. UbiK OVERVIEW
UbiK facilitates small form-factor, touchscreen-based mo-

bile devices with an external, virtual, paper-printed1 key-
board. Although such a keyboard does not provide the same
kinesthetic feedback as a mechanical one, it saves the pre-
cious touch-screen area and allows ten-finger typing on a
larger workspace. Unlike on-screen virtual keyboard, UbiK
is insensitive to gentle taps and touches. It allows finger/wrist
rest on the touch surface, thus relieving fatigue [2] caused
by hovering.

Figure 1 illustrates a typical use case of UbiK. The mo-
bile device is placed near the printed keyboard, so as to
capture the keystroke sound using its microphones. Be-
fore running UbiK, an initial setup is needed, whereby the
user types all the printed keys at least once and generates
“training sounds”. UbiK runs a set of novel keystroke de-
tection/localization mechanisms in the mobile device, which
learn highly distinguishable acoustic features from the key-
strokes, and then use such features to detect subsequent key-
press events and localize the corresponding keys.

Usage conditions UbiK is applicable under two ba-
sic conditions: (i) The surface can generate audible sounds
when the user clicks it with fingertip and nail margin. (ii)
Throughout the usage life-cycle, the positions of the mobile
device and the printed keyboard do not change significantly.

The first condition can be easily satisfied in real-life envi-
ronment. Through experiments, we show that UbiK works
on a wide range of surfaces, e.g., on top of a wood ta-
ble, hard-covered paper, metal cabinet, plastic board, etc..
UbiK does not rely on the timbre of the keystroke sounds.

1Throughout this paper, we print the keyboard on a letter-
sized paper. But any tangible and visible keyboard layout
(e.g., drawn on a surface) works for UbiK. The keyboard out-
line is not mandatory. It mainly serves as a visual assistant
that helps users to maintain keystroke positions consistent.
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Figure 2: Architecture of UbiK.

Keystrokes can be identified even on a flat, homogeneous
surface that makes the same audible sound everywhere.

Regarding the second condition, we note that keyboard in-
put is necessary only when the mobile device acts as a static
screen, where user can type and monitor the input text in
real-time. Thus, it is reasonable to assume the printed key-
board and mobile devices sit on fixed positions that can be
identified using arbitrary anchoring marks on the surface.
The user can always move the mobile device away and repo-
sition it back to the anchoring points to continue UbiK’s
usage life cycle. But whenever the keyboard and mobile
device are put to a new location or surface, UbiK requires
repeating the initial setup to start a new life cycle.

Design goals and challenges UbiK is designed to meet
the following goals, which are geared towards similar user
experience as on a desktop keyboard.

(i) Portability. UbiK should not rely on any extra hard-
ware, bulky keyboards or external infrastructure support. It
should allow spontaneous setup and usage, using only hard-
ware/software built in existing mobile devices.

(ii) Fine-grained, centimeter-scale keystroke localization.
Typical inter-key separation on a PC keyboard is only around
2 cm when printed on letter-sized paper. Thus, UbiK needs
a localization mechanism that matches the centimeter-scale
granularity and can identify keystrokes with high accuracy.
There exists a vast literature of algorithms for audio-source
localization leveraging Time-Difference-of-Arrival (TDOA)
or energy difference between multiple microphones [10, 12].
Yet such algorithms can only achieve meter-scale accuracy
in practical environment with rich reverberation effects.

(iii) Processing efficiency. UbiK’s spontaneous keyboard
setup requires user to traverse all keys to generate training
data for localization. Such training procedure must be brief
and should not compromise usability. Ideally, a few repeti-
tions of training should ensure high localization accuracy. In
addition, since UbiK runs on the mobile device directly, it
must process the keystrokes without any noticeable latency.

(iv) Robustness. UbiK’s localization mechanism must be
resilient against minor displacement of the keyboard or mo-
bile device, which may be caused by unintended movement
or inaccurate repositioning during the usage life cycle. It
should not be affected significantly by variations of user’s
finger/hand posture. In addition, UbiK should accurately
detect the presence of keystrokes even in noisy environment.

System architecture UbiK architects the following three
major components to build a full-fledged keystroke localiza-
tion system for mobile devices.

(i) Keystroke detection. UbiK runs a keystroke detection
algorithm that takes advantage of the audio signal onset
patterns generated by keystrokes. It isolates noise and in-

terference by fusing audio and motion sensing data. It is
used to trigger the subsequent keystroke localization.

(ii) Keystroke localization. Instead of attempting to com-
bat multipath reflections as in existing localization schemes
[13, 14], UbiK’s keystroke localization algorithm harnesses
the location-dependent audio signal cancellation/enhancement
features, and optimize them to achieve high accuracy at
a fine granularity. Further, UbiK migrates the principles
of multi-antenna spatial diversity in wireless communica-
tions [15], and uses dual-microphones on typical mobile de-
vices to enhance localization accuracy.

(iii) Online calibration and adaptation. UbiK takes ad-
vantage of run-time user feedback on-screen to correct oc-
casional localization errors. It further employs an online
adaptation algorithm to refresh the training data to prevent
error propagation.

Figure 2 illustrates the work-flow inside UbiK. During the
initial training stage, UbiK learns acoustic parameters and
features that later assist run-time keystroke detection and
localization. Afterwards, it runs the keystroke detection al-
gorithm to extract audio signals specifically generated by
key presses. The keystroke localization algorithm extracts
and optimizes acoustic features from those signals and finds
the best match in the trained benchmark. It then outputs
the resulting key symbol along with alternative candidates
on-screen, which can be calibrated by the user. The cali-
brated result is fed back to the online adaptation algorithm
to refresh the training data.

3. FEASIBILITY STUDY OF UbiK
UbiK is built on the hypothesis that audio channel’s mul-

tipath profile can enable fine-grained keystroke distinction.
In particular, the audio channel contains a rich set of charac-
teristics that is consistent over time for each key, but differs
across key locations. In this section, we conduct a compre-
hensive set of experiments to verify this hypothesis through
addressing the following three questions: (i) Do different
keystrokes generate unique audio signatures? (ii) Do these
signatures exhibit fine-granularity and temporal stability?
(iii) Can these signatures be enhanced using COTS hard-
ware?

3.1 Preliminaries
We first describe the preliminaries to the feasibility study,

covering the basics of sound signals and our experimental
setting.

Basics of Sound Signals Sound is a wave phenomenon
in air, fluid or solid medium. Mechanical vibrations at a
sound source causes compression and decompression of the
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(a) Signals from key location 'A' (b) Signals from key location 'D'
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Figure 3: Received chirp signals sent by a speaker
at two different key locations: ‘A’ and ‘D’.

medium, which propagates over distance and attenuates fol-
lowing a inverse-square law [16].

Practical audio channel adds more intricacies than atten-
uation. Solid surface or objects near sound source or mi-
crophones can reflect or scatter the original audio source,
causing a myriad of “image sources”. Phantom waves pro-
duced by such image sources can either cancel or strengthen
the original wave at different locations. Even for the same
location, a sound wave can either be faded or strengthened,
depending on its wavelength or frequency. In UbiK, we aim
to extract such location and frequency dependent features
from keystroke sounds to pinpoint the keystroke location.

Experimental Setup Our experiment setup complies
with UbiK’s typical usage scenario. We print the Apple
Wireless Keyboard (AWK) layout on a piece of letter pa-
per, and put it on a solid surface – a wood table by default.
A Galaxy Nexus (GT-I9250) Android smartphone is placed
close to the top-level of the printed keyboard to capture
the keystroke sounds, at 48 kHz sampling rate. We redrew
the exceptionally big keys on AWK, including Shift, Enter,
Space, etc., and limit them to be the same size as others.
All experiments run in an office environment, with moder-
ate noise coming from desktop computers and a server room
nearby. Our experiments require a dual-microphone setup.
Though equipped with two microphones, the Android appli-
cation framework only allows user access to one microphone.
We circumvented this limitation by enabling the Tinyalsa
driver in Android OS (Section 7).

We next present our experimental validation of the afore-
mentioned hypothesis.

3.2 Multipath Channel Profile-based Signature
Frequency and location dependent fading effects We
first design experiments to understand the variation of multi-
path fading effects across different frequencies and locations.
We place a smartphone’s speaker at two key locations, ‘A’
and ‘D’, on the printed AWK. The speaker emits a 100 ms
chirp sound, with magnitude being constant but frequencies
linearly increasing from 10 Hz to 5 kHz. Fig. 3 plots the au-
dio signals captured by the front-microphone of the listening
smartphone.

Despite the constant magnitude sound source, received
signals manifest substantial variations across the sampling
indices. This verifies the intuition that waves with different
frequencies experience different fading levels at the same lo-
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Figure 6: Amplitude spectrum density of two key
strokes ‘A’ and ‘D’ on a wood table.

cation. Further, even around the same frequency, location
‘A’ and ‘D’ exhibit different fading profile — one may be
deeply faded while the other experience peak signal strength.
Hence, multipath fading effects are also location dependent.

We further investigate the frequency-domain patterns of
two actual keystrokes. We characterize such patterns by us-
ing the received signals’ amplitude spectrum density (ASD).
Suppose R(t)(t = 0 · · ·T ), are the discrete signal samples
captured by the microphone, then the ASD is defined as:
FFT(R(t)). Since audio signals are real numbers, their ASD
is symmetric with respect to the half-frequency (e.g., 24 kHz
at 48 kHz sampling rate). We only use the first half to avoid
duplication.

Figure 6 plots the ASD corresponding to user-generated
click sounds at key locations ‘A’ and ‘D’, normalized with re-
spect to the maximum across all frequency bins of each. We
see that the majority of frequency components concentrate
within 10 Hz and 1 kHz. The ASD of two locations peak at
different frequency bins, and exhibit distinct values across
frequencies. This provides us with a first hint for using ASD
as location signature.

Summary of observation 1: Multipath channel pro-
file represents unique audio signatures for different keystrokes
and enable signature-based localization.

3.3 Spatial Granularity and Temporal Stabil-
ity of Channel Profile

Consistency of ASD on the same key location Given
the potential of ASD as location hint, one would ask: is
ASD consistent across clicks of the same key, and will it be
fine-grained enough to distinguish adjacent key locations?
Figure 4(a) plots the Euclidean distance between the nor-
malized ASD of 9 closely located keys. Each key is clicked by
5 times using finger tip and nail on a wood table, generating
a total of 45 signatures.

We observe that short Euclidean distances are concen-
trated for each 5 keystrokes on the same location. Occa-
sionally, a keystroke may have similar ASD with nearby or
distant keys, yet the most similar ones almost always fall in
the same location. Note that the diagonal line represent the
zero distance between each key press and itself.

One may wonder if the ASD profile is possibly attributed
to heterogeneous acoustic profile of the touch surface. To
rule out this possibility, we place a speaker at the 9 key loca-
tions and repeat the chirp sounds 5 times each. Figure 4(b)
plots the resulting Euclidean distances between the bursts
of chirp tones. Now the ASD signatures show a more clear
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Figure 4: Euclidean distance between ASD of sounds at 9 key
locations, each repeated 5 times in two cases: (a) each sound
source is created by finger/nail clicking on the key locations; (b)
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Figure 5: Euclidean distance between
a group of keystrokes at a testing po-
sition and those at an anchoring posi-
tion.

location-dependent trend. This confirms that there is no
need to use heterogeneous surface materials. On the other
hand, the better Euclidean distance profile of chirp tones
implies that user’s inconsistent click behavior can cause vari-
ation of the location signatures.

Spatial correlation of ASD signature We now ex-
amine in more detail how resilient ASD is to minor devia-
tion of click positions, which can naturally happen because
users’ finger touch positions are not perfectly consistent. We
first create an anchoring group of 25 clicks at a fixed posi-
tion, and then generate testing keystrokes, which deviate
from the anchoring position by 5 mm to 120 mm. For each
testing position, we calculate the Euclidean distances of all
(testing, anchoring) pairs, using ASD as the feature vector.
Figure 5 plots the mean and standard deviation of the Eu-
clidean distances. We observe that the Euclidean distance
increases almost monotonically with the physical separation
between keys. For physical separation of 5mm, the change
of Euclidean distance is minor, implying that spatial corre-
lation does exist between ASDs of closeby clicks. However,
on average, keystrokes with physical separation of more than
1cm (roughly the distance between the center of one key and
edge of a neighboring key) have larger ASD separation than
those below 1cm. Therefore, clicks on the same key can be
separated from those a neighboring key. Note that the Eu-
clidean distances exhibit variance, mainly because the user
cannot perfectly control the click positions.

Temporal stability of ASD To test temporal stabil-
ity, we repetitively create groups of 10 clicks on the same
key location. The experiment spans over one month, while
the keyboard and phone are fixed on the same location.
Ambient environment changes are minor, including place-
ment/displacement of chairs, laptops, cups etc. Figure 7
plots the Euclidean distance between the ASD of a ran-
dom keystroke in each group with that of all keystrokes
in the first group. Over time, the mean Euclidean dis-
tance does not show significant change, although variance
increases slightly after one month. Thus, compared with ra-
dio channels [17], the multipath profile of audio channels is
more stable over time. It is also less sensitive to ambient
objects movement, likely because reflected waves from those
objects may be too weak and below the sensitivity of the
microphone. We gauge the multi-path effects mainly come
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Figure 7: Euclidean distance between keystrokes
varies negligibly over time. Error bars show the
max-min values.

from keystroke sounds’ propagation along the surface and
reflections/diffractions around the smartphone body.

Summary of Observation 2: The keystrokes’ audio
signatures follow consistent patterns within a key-size area,
so the localization algorithm can be resilient to minor dis-
placement of device and small variation of key-press posi-
tions. The signatures are also highly stable over time.

3.4 Diversity from Multiple Microphones
Channel diversity from dual-microphone Inspired
by the diversity gain in multi-antenna wireless communi-
cations, we examine whether dual-microphone, a standard
equipment in modern smartphones, can enrich the ASD sig-
nature of a key location. Figure 8 plots the ASD of 10
consecutive clicks of the same location, received by two mi-
crophones on Galaxy Nexus. The ASD curves of different
clicks show a highly consistent pattern on the same micro-
phone. Yet across different microphones, they differ drasti-
cally. This implies that audio channel diversity does exist,
even though the microphones separate at a much shorter
distance (12.5 cm) than the half-wavelength (e.g., 34.3 cm
at 500 Hz frequency) of audible keystroke signals.

Coarse-grained localization in conventional dual-mic
algorithms Microphone-array has been extensively used
for sound source localization (SSL), e.g., localization a speaker
in a lecture room. The principle resembles human percep-
tion of sound direction, inferred by time-difference-of arrival
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Figure 9: Distribution of the TDOA and EDIF be-
tween two microphones.

(TDOA) and energy difference (EDIF) between signals re-
ceived by two ears [16].

Our earliest attempt to build UbiK followed this princi-
ple. Theoretically, on a 2D space, locations of the same
TDOA value form two hyperbolas centered around the two
microphones, and those of the same EDIF value form a circle
centered around one microphone [18]. Intersections between
these two form two points, but one can be eliminated as the
microphones in UbiK always reside on one side of the key-
board. We compute the TDOA between two microphones
using GCC-PHAT (generalized correlation with phase trans-
form), a state-of-the-art algorithm widely used for SSL in
practice [19]. The total energy received by each microphone
can be derived by summing up the power spectrum density.

Figure 9 shows the distribution of TDOA and EDIF of
each key, repetitively clicked by 20 times. Even for the same
key, its TDOA values are inconsistent across clicks. TDOA
algorithms assume a single non-reverberant path between
sound source and microphone, hence it is highly sensitive to
multipath reflections and minor deviation in click positions
(which is unavoidable). Similarly, the EDIF of the same
key spreads over a wide range, and even distant keys (e.g.,
‘Z’ and ‘K’) can have similar EDIF. Therefore, conventional
dual-microphone SSL algorithms cannot achieve fine-grained
localization as required by UbiK.

Summary of Observation 3: Multiple microphones
on mobile devices can provide spatial diversity and improve
granularity of keystroke localization. The diversity mecha-
nism should embrace, instead of avoid multipath reflections.

4. KEYSTROKE DETECTION
UbiK’s keystroke detection algorithm identifies the signals

generated by key-presses. Its core design goal is to ensure

(i) low false-alarm and mis-detection rate and (ii) resilience
to noise coming from the user and ambient environment.

4.1 Basic Detection Mechanism
The audio signals produced by a key-press event manifests

a common onset pattern, with a few outstanding peaks in the
beginning followed by small reverberations, which together
form a cluster of energy burst rising above noise. Since the
printed keyboard is close to the mobile device, keystroke
sounds are much stronger than ambient noises. UbiK lever-
ages such unique profiles to single out the keystroke signals.

In its simplest form, the detection algorithm computes the
received signal magnitude or power and declares a keystroke
if it exceeds a threshold. Yet no different environment bears
different noise levels. A keystroke detection mechanism must
adaptively configure the threshold that separates keystrokes
from noise. UbiK meets this goal by adapting the Constant
False Alarm Rate (CFAR) algorithm [20], a statistical ap-
proach historically used in Radar systems to identify signals
reflected by intruding objects.

CFAR approximates ambient noise power with a Gaussian
distribution N (µ, σ2). A significant energy burst is detected
if the incoming signal power passes a threshold value of (µ+
γσ), or γ standard deviations above the mean noise floor.
Given the noise distribution, the detection may also be a
false alarm triggered by noise, with probability 1− erf( γ√

2
),

which decreases exponentially with γ.
In UbiK’s CFAR implementation, we estimate the noise

power µ through a moving average window with size W :

µ(t) =
1

W
A(t) + (1− 1

W
)µ(t− 1),

where A(t) is short-term average noise power right before t.
Denote x(t) as the received audio signal at time t, then,

A(t) =
1

W

t∑
k=t−W+1

|x(t)|2.

Estimation of variance σ(t) follows the same way as µ(t).
We choose the window size W to be much shorter than the
duration of environment sounds, so that even if bursty in-
terference occur, the interfering signals within W can still
be approximated as Gaussian. An empirical value of 1 ms
(48 samples at 48 kHz sampling rate) for W works across a
wide range of environment according to our experiments.

UbiK declares a key-press event at t if: (i) incoming sig-
nal’s energy |x(t)|2 passes the CFAR threshold (µ + γσ),
and (ii) current detection separates from previous one by a
safe margin. For devices with dual microphones, either one
satisfying these conditions is accepted. We configure γ dur-
ing the initial training stage, by linearly searching through
all integer multiples of 0.5 within the range [1, 10], and pick
the highest one that results in zero mis-detections and false
alarms for the known keystrokes. The safe margin between
keys is configured to a value smaller than the minimum sep-
aration between two consecutive keytrokes.

4.2 Combating Bursty Noise
Since UbiK relies on energy based detection, it can be eas-

ily disturbed by bursty noise. However, the smartphone’s
microphones fall within a short-range to keystrokes, typi-
cally 10 to 20 centimeters, whereas sound signal power de-
creases with distance following a inverse-square law [16].
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Therefore, far-field noise sources, e.g., a few meters away
from the microphone, cause negligible interference to keystroke
detection unless they are exceptionally loud.

According to our field test of UbiK, near-field noise mainly
comes from two sources: human voices nearby, and user
tapping on the smartphone screen which causes non-trivial
noise bursts due to close proximity to the microphones.

UbiK utilizes a sensor fusion technique to combat both
noises. Gyroscope, which senses rotations in three dimen-
sions, serves as a secondary source for keystroke detection in
UbiK. At start-up time, UbiK assumes the phone remains
stationary on the surface and collects gyroscope data for a
short period for calibration. A threshold ε1 for determining
the existence of keystrokes, is then set at two times of the
maximum of gyroscope readings during calibration. UbiK
declares a keystroke only if both the audio and gyro confirm
its presence. In such way, false alarms caused by human
voice are eliminated since it does not cause surface vibra-
tions.

Tapping actions on screen (caused by user’s runtime feed-
back) disturb the gyroscope reading to a much larger degree
compared to tapping on desk surface. A threshold ε2 for
tapping-on-screen is determined when user first taps the on-
screen button to start training. ε2 is empirically set to 1

2
of the maximum gyroscope output during the user tapping.
At run-time, only when the gyroscope readings are above ε1
and below ε2, a potential keystroke is confirmed.

Recent work has shown that accelerometers can detect
keystrokes tapped on a physical keyboard [21]. In UbiK’s us-
age case, smartphone’s motion variations are much smaller.
Since tapping bends the area closer to tapping point more
than the area further away, a rotation of the smartphone
can be captured more easily by gyroscope. Accelerometers,
designed to measure larger movements, have more noises
at such granular level. From our experiment using Galaxy
Nexus and Nexus 7, gyroscope yields cleaner and larger
distinctions between a steady phone and a shaking phone
caused by key tapping.

5. KEYSTROKE LOCALIZATION
In this section, we describe how UbiK’s keystroke local-

ization algorithm leverages the previous experimental obser-
vations (Section 3) to distinguish the keystrokes.

5.1 Location Signature Design
Our measurements have established Amplitude Spectrum

Density (ASD) as a promising location hints. ASD reflects
the frequency domain acoustic channel profile caused by
sound waves’ multipath fading. Compared with the signal-
power based fingerprinting widely used in geo-location sys-
tems, ASD incorporates a richer set of features, thus finer
granularity. Compared with a time domain approach that
uses the sound waves directly as fingerprint, ASD is insen-
sitive to waveform ambiguities and unpredictable stretches.
To synthesize such advantages and make ASD a practically
useful signature, we still need to address the following prob-
lems.

Estimating keystroke duration UbiK uses D sam-
ples following the start of a keystroke to compute ASD. D
represents an estimation of keystroke duration, which de-
pends on surface type and users’ click actions. We obtain D
from the initial training setup. For each known keystroke in

the training set, we first obtain the noise floor Pn preceding
it (Section 4). A keystroke usually corresponds to a sudden
jump in signal power that quickly reaches a peak level Pmax.
Then, D is estimated as the number of samples between the
start point and the point when mean signal power first drops
to below Pn + (Pmax − Pn) × 10%. Capping the keystroke
duration at a power level slightly (10%) above noise floor
prevents UbiK from incorporating unnecessary noise follow-
ing the actual keystroke signals. The estimated keystroke
durations of all keystrokes in the training set are averaged
to obtain D.

Optimizing frequency range Our previous measure-
ment on a woodtable revealed that the main ASD features
concentrate within a small frequency range. Adding higher
frequencies into the signature increases the computational
load during signature matching, which may worsen process-
ing latency. Moreover, it may invite high-frequency noises
that are not generated by the keystroke. The key problem
here is how to determine the critical frequency range, which
may vary on different solid surfaces. Our solution to this
problem is inspired by the optimal separating hyperplane
problem in statistical learning [22].

Conventionally, optimal separating hyperplane is used for
binary classification, i.e., finding a hyperplane that sepa-
rates two classes of data and maximizes the distance to the
closest point from either class. Denote β as the vector nor-
mal to the hyperplane, xi∗ the vector of features in i-th data
set, and y the correct prediction (either 1 or −1). Then the
classification problem for a given xi∗ can be cast as:

yi = sgn(βx+ b) = sgn(
∑N
j=1βjxij + b) (1)

where sgn(·) is the sign function. The training process in bi-
nary classification solves the following optimization problem
to obtain the optimal weights vector β and offset b [22]:

argβ,b min ||β||2 (2)

s.t. yi
(∑N

j=1 βjxij + b
)
≥ 1, i = 1, 2, · · · , St (3)

where St is the number of instances in the training set.
In UbiK, we cast the problem of finding the critical fre-

quency range as a similar problem but with much lower com-
plexity. Denote J as the “sweet spot” frequency below which
the ASD features should be included. Since the frequency
bins are not weighted, we only need to find:

argJ,b min ||J ||2 (4)

s.t. yi
(∑J

j=1 xij + b
)
≥ 1, i = 1, 2, · · · , St (5)

This is a mixed-integer program, generally intractable.
However, observing that there are only a limited number
of possible values for J , we reformulate the optimization
problem as a feasibility problem, and solve it by searching
for the minimum J that results in a feasible value for b, such
that:

b ≥ 1

yi
−

J∑
j=1

xij , i = 1, 2, · · · , St (6)

In the common cases, the critical frequency J is above
100 Hz. Thus we only need to start searching from the fre-
quency bin: B · 100/Fs, where Fs is the audio sampling fre-
quency and B the FFT size (total number of frequency bins).
In our actual implementation, by default B = 4096, Fs =
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48000, St = 3 and the maximum search range is 5000 Hz.
Thus, the maximum number of operations of Eq. (6) is
St · B · (5000 − 100)/Fs ≈ 1254, which can easily run in
real-time on a modern mobile device.

Determining frequency resolution When comput-
ing ASD, a large B results in more frequency bins, thus
higher frequency resolution, yet it also increases compu-
tational load. In UbiK, we empirically set B to the first
2’s power larger than the keystroke duration. A typical
keystroke (e.g., on wood table or hard-cover paper) spans
around 2000 samples (at 48 kHz sampling rate). Corre-
spondingly, B = 2048.

5.2 Initial Training
During initial setup, UbiK displays instructions on the

mobile device’s screen to guide the user to sequentially click
all keys (A–Z, 0–9, and symbolic/functional keys) on the
printed keyboard. On a printed Apple Wireless Keyboard
(AWK), with 56 keys in total (excluding PC-specific func-
tional keys), this training process takes only around 1 minute,
even for first-time users. Users are encouraged to use the
same finger to click a key as they would in actual typing.

The audio samples generated by training keystrokes have
known labels and are used for three purposes: (i) optimiz-
ing core parameters in UbiK’s keystroke detection algorithm
(Section 4); (ii) initializing and optimizing the ASD signa-
tures as discussed above; (iii) providing benchmark ASD
signatures to be used in keystroke localization.

Intuitively, repeating the training procedure multiple times
can improve the keystroke localization accuracy. This entails
more user workload. However, as shown in our evaluation
(Section 8), it only takes 3 training samples each for UbiK
to escalate its accuracy from 70% to above 91%. Such over-
head is negligible if the keyboard is to be used for hours,
e.g., in a coffee shop, on an office desk or tray table of an
airplane.

5.3 Localization Algorithm
UbiK’s keystroke localization algorithm is a pattern classi-

fication scheme that matches the ASD features of user-typed
keystrokes with those instances in the training set.

Basic classification After detecting a key-press event,
UbiK extracts the ASD features from corresponding audio
signals of both microphones, which together form a vec-
tor of length 2D. Depending on the relative location of a
keystroke, the two microphones may detect the event with
different starting point. UbiK computes the ASD of the two
sequences of signals, with the starting point of each sepa-
rately, but keeping the same keystroke duration parameter
D. This ensures the ASD features are best aligned in time
and compared in a consistent manner.

Then, UbiK runs a nearest-neighbor based pattern match-
ing (classification) algorithm that compares the extracted
features with those in the training set. The training key
with minimum distance is declared as the current keystroke
and output to the user interface. In the simplest form, we
use Euclidean distance as the metric of comparison.

Optimizing ASD features for classification Our con-
trolled experiments (Section 3) have shown that click sounds
on the same key location tend to have much shorter Eu-
clidean distance (w.r.t. ASD features) than that between

different keys. In practice, the Euclidean distance can be
disturbed by multiple uncontrollable factors.

Recall that the ASD represents a mix of features from
the click sound and the multipath channel distortion. The
strength of user’s clicks may vary over time, thus causing
ASD variation even for the same key. However, the variation
tends to simply scale the entire ASD curve. The frequency
bin with maximum magnitude remains consistent. We thus
normalize each ASD feature with its highest magnitude to
improve resilience to variation of click strength.

Further, we observe that the variance of ASD feature
within the same frequency bin (but across training instances)
can reflect the confidence of pattern matching. For the same
key, if the amplitude of a certain frequency bin exhibits a
small variance, then that frequency bin should be considered
as a highly reliable feature element. Thus, at run-time, for
each frequency bin f of the user-typed keystroke, we scale
its magnitude by 1

Vf
, where Vf is the magnitude std. of the

training instances. Note that such scaling should be done
before the above feature normalization. The frequency bin
with peak magnitude is ignored since it tends to have stan-
dard deviation after normalization.

Fail-safe mode adaptation UbiK’s keystroke detec-
tion algorithm can prevent false triggering by nearby bursty
interferences, most commonly, human voice. However, a
tougher case comes when human voice and keystroke sounds
overlap, which contaminates the keystroke’s ASD feature.
UbiK tackles such cases by adapting to a fail-safe mode.
Rather than outputting a wrong key value, which entails
user correction and causes extra burden, UbiK outputs noth-
ing but a “interference” warning on the user interface.

To identify such heavily interfered keystrokes, we observe
that human speech tends to show a consistent amplitude
for at least tens of milliseconds. In contrast, a keystroke
features a cluster of high-amplitude signals, for a few mil-
liseconds, followed by small vibrations. Therefore, whenever
an energy bust is detected, UbiK takes the derivative of the
signal amplitude envelop, starting from the highest peak and
spanning one keystroke duration D. If the derivative’s mag-
nitude is below 50% than that of keystrokes in the training
set, then UbiK decides the keystroke to be contaminated.

6. ONLINE CALIBRATION AND ADAPTA-
TION

UbiK presumes the keyboard and mobile device are kept
at stable positions throughout its usage life-cycle. In prac-
tice, the positions may be disturbed by, e.g., surface vibra-
tion, screen touches, and user’s repositioning of the mobile
device. Over time, user’s typing posture may also vary due
to fatigue, rendering ASD features in the initial training set
outdated. UbiK employs a run-time calibration and adap-
tation framework to tackle such problems.

6.1 Runtime Calibration
UbiK executes run-time calibration by combining user cor-

rection with its own localization hints. For each keystroke,
besides the output from the localization algorithm, it also
displays the top 5 candidate keys, i.e., those with shortest
feature distance. User can click a candidate if it is the ac-
tual intended key. In the rare case when the candidate list
does not contain the intended key, the user can reenter the
key using the built-in on-screen keyboard. UbiK places the
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“Delete” key on the screen instead of the printed keyboard,
since it must be reliably recognized for calibration purpose.
To minimize disturbance to the ASD features, the mobile
device should remain on the surface when user performs on-
screen correction.

6.2 Adapting and Optimizing Training Set
UbiK updates the training data set progressively while

the user types in more keys. The update opportunistically
employs feedback hints about correctness of a localization
decision. UbiK deems a localization output as correct if the
user does not execute run-time correction. Since the user
may not immediately correct a character error, UbiK defers
the decision on correctness until then end of the current
word input (using space and punctuation as a hint). Besides,
user tapping a character on the candidate list implies that
an localization error occurred. Notably, user pressing the
“Delete”button is not necessarily a hint for localization error
because it may be the user’s own input error.

If a keystroke is correctly located, the corresponding ASD
feature will be put into that key’s training set as a new
training instance. In addition, UbiK employs a feedback
based weighting mechanism to rank the significance of ex-
isting training instances.

Weight design for correctly located keys. At time
t, UbiK associates a weight wki(t) to the i-th instance of
key k in the training set. t is discrete and simply counts the
number of localization runs. wki(0) equals 1 for all instances.
Suppose d(k, i, S(t)) denotes the distance metric between
each training instance and the incoming key features S(t),
then UbiK uses d(k, i, S(t)) ·wki(t) as the distance metric to
decide the nearest training instance for S(t).

If a keystroke is correctly located, the corresponding train-
ing instances decreases its weight as:

wki(t+ 1) = V (wki(t)) (7)

where V (·) is a convex function, such that the decreasing
step becomes smaller if wki(t) is already small. To prevent
a small set of instances biasing the classification, wki(t) is
capped between 0.8 and 1.2. Accordingly, we set

V (x) = 0.8 + (x− 0.8)2 (8)

to ensure convexity within this range.
Weight design upon localization error. If a keystroke

is located wrongly, the nearest training instance decreases its
weight as:

wki(t+ 1) = X(wki(t)) (9)

where X(x) is a concave function, designed following similar
intuition as V (x), as:

X(x) = 1.2− (x− 1.2)2 (10)

In addition, after user enters the correct key, the nearest
instance to that key will update its weight following Eq. (8).
To prevent bias by frequently used keys, we further nor-
malize wki(t) by t, i.e., the number of times instance i is
updated. Here the frequency of usage means the frequency
when a training instance is updated, which in turn depends
on how frequently the corresponding key is pressed. With-
out the normalization operation, a frequently used key, say
‘A’, may have training instances with very small weights,
which results in small Euclidean distances between ‘A’ and
all other keys, thereby causing localization errors.

7. IMPLEMENTING UbiK ON ANDROID
We implemented UbiK as a standalone application pro-

gram running directly on Android devices. Specifically, we
implement all the components described in Section 4, 5 and
6. In implementing the online adaptation, we eliminate
training instances with largest weights, and keep a constant
training set size of 10. We found the user may occasionally
miss the localization error and the corresponding instance
will be mistakenly put into the training set. However, such
instance does not pollute the training set in a significantly
way, because it does not contribute to correct localization
and thus will be replaced from the training set in a short
time with online adaptations.

As for dual-microphone audio acquisition, the Android ap-
plication framework blocks the stereo recording (the back
microphone is only used for noise cancellation by the frame-
work). We overcame this constraint by bypassing the build-
in framework and using the low-level tinyalsa driver instead.
We modified the tinyalsa driver so that it can stream dual-
channel audio samples to applications through standard I/O.
UbiK’s Java implementation triggers the recording by fork-
ing tinyalsa as a child process. The implementation gets
recorded samples from tinyalsa every 10 ms. These sam-
ples are then put into a 100 ms audio buffer. Our keystroke
detection algorithm runs on these 10 ms audio instances.
When a keystroke occurs, the application continues to col-
lect audio until enough samples are obtained for extracting
ASD signatures.

To benchmark the run-time efficiency of UbiK in our im-
plementation, we use a Galaxy Nexus smartphone to record
a keystroke sound, and replay it while running UbiK. Then
we measure the latency between the time when the faked
keystroke sound is played back and when UbiK outputs the
localization result on the screen. We found an average pro-
cessing latency of 51.4 ms, and standard deviation 2.7 ms.
Such latency is well below human response time. In fact, we
experience no lagging effects when using UbiK.

8. SYSTEM EVALUATION
In this section, we first evaluate each design component of

UbiK, as well as the underlying impact factors in a variety
of test scenarios. We then conduct a user study to verify
the effectiveness and usability of UbiK in comparison with
existing text-entry methods.

8.1 Micro-benchmark Tests
We run experiments using the following default setting

unless explicitly specified. We use a Galaxy Nexus phone,
which is placed near the edge of a printed keyboard on top of
a wood table. We use AWK as the default keyboard and test
design components with online-adaptation disabled (except
in the adaptation test).

Accuracy of keystroke detection We first evaluate
UbiK’s keystroke detection in four scenarios, specifically, in
an office environment (wood table), a server room (metal
cabinet), at food court (wood table) and on a flying air-
plane (tray table). The former three represent typical, daily
environments such as office and cafeteria, and the latter is
used to examine UbiK in an extremely noisy environment.
These our test scenarios reflect a variety of realistic noise
levels, which ranges from 23.2 to 76.5 dB. Noise level is mea-
sured by Sound Meter Pro, an Android app calibrated by a
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Office Server room Food court Airplane

Noise level 23.2 dB 45.8 dB 41.0 dB 76.5 dB

Pmis 0.33% 1.33% 0.33% 1.67%

Pfls 0.0% 0.0% 0.67% 5.0%

Pmis (no gyro) 0.0% 2.0% 4.0% 8.67%

Pfls (no gyro) 0.67% 0.33% 7.33% 8.67%

Table 1: Keystroke detection accuracy in four envi-
ronments.

Office Server room Food court Airplane

Loc. accuracy 97.1% 94.0% 91.9% 92.4%

Table 2: A baseline accuracy test of keystroke local-
ization in four environments.

professional acoustic meter [23]. In each test, a user uses
finger tip plus nail margin to make 300 clicks, each on a
randomly selected key position. The click strength is empir-
ically maintained to be audible by the user, at a similar level
as PC keyboard click sound. Across all the experiments,
the detection algorithm uses the default set of parameters
described in Section 4.

Table 1 presents the resulting mis-detection (Pmis) and
false-alarm (Pfls) rates. It reveals that the keystroke detec-
tion is accurate, robust and reliable. Here are two obser-
vations. First, the error rates are kept below a reasonable
level (< 5% in the worst case). In the relatively quiet en-
vironment (office and food court), both Pmis and Pfls are
negligible. On an extremely noisy airplane with occasional
vibration, they only increase to 1.67% and 5%, respectively.
Second, gyroscope improves the accuracy, especially in case
of noise. The noise level is lower at food court than in the
server room, but Pfls can be up to 7.33% without gyroscope.
This is mainly attributed to the interference from nearby
human voices. Falsely detected keys trigger a chain effect,
leading to subsequent miss detections (recall the safe margin
between keystrokes). As a result, error rate becomes unac-
ceptably high when gyro is disabled. Note that, in a quiet
environment, CFAR based detection maintains an error rate
below 2%, even with gyro sensor disabled. Clearly, UbiK is
able to effectively eliminate the negative impacts of noise
and yield a robust and accurate detection.

Accuracy of baseline localization We perform a base-
line test of keystroke localization in the above environments.
The keyboard setting remains the same as above, except
that all 56 keys on the AWK are pressed sequentially, each
repeated 25 times. We carry on a conventional leave-one-out
cross-validation. This statistic tends to be generous, since
training and testing datasets are collected from the same
user and adjacent in time (which will naturally tend to be
more similar). Nonetheless, it provides a micro-benchmark
to validate the effectiveness of UbiK’s location signature de-
sign and optimization. Note that add-on features such as
online-adaptation and calibration are disabled.

Figure 10 plots the resulting confusion matrix in the office
room. Each element (i, j) represents the probability that key
i’s nearest neighbor is one of the clicks on key j. Clearly,
keystrokes localized by UbiK densely overlap with the ac-
tual ones. Among those few erroneous localization results,
most are mistaken with one or two other keys. Intuitively,
such errors can be further reduced or eliminated by online

adaptation (the training set is updated as user inputs more
keys).

Table 2 enumerates the average localization accuracy in
different environment, where false detection and miss detec-
tion are manually eliminated in order to isolate the impact
of keystroke detection. The results demonstrate remarkably
high accuracy, above 97% in office environment, and around
92% in adverse acoustic environment.

Impact of initial training The initial training set size
affects UbiK’s usability and accuracy — a tradeoff that de-
serves a fine-balance. Figure 11 plots the achieved accuracy
as the number of initial training instances increases. It shows
that localization accuracy is around 70% even with one ini-
tial training. As the number of training instances grows up
to 3, accuracy escalates to above 91% on average. Further
increasing the number beyond 5 provides marginal improve-
ment only. Therefore, the user only needs to input 3 training
instances per key to achieve reasonable performance. This
is a small burden to pay if the keyboard life cycle spans
more than a few minutes but may be undesirable otherwise.
Later we will show that the training can be embedded in
subsequent typing to reduce user work load at the start.

Effectiveness of frequency range optimization Our
initial implementation of UbiK used an empirical frequency
range of 0 to 5 kHz — roughly the same as that of hu-
man voice — in the ASD feature selection. This worked
well if the user carefully stays consistent in terms of fin-
ger gesture, click position and strength, when making the
keystrokes. However, the performance becomes erratic once
she types rapidly. Figure 12 plots the localization accuracy
resulting from this empirical approach, in comparison with
that after UbiK’s frequency-range optimization mechanism
(Section 5.1). The experiments run on four different types
of solid surfaces, each repeated 8 times (std. shown by er-
ror bars). UbiK can maintain above 95% of accuracy across
all the experiments, whereas the empirical frequency setting
achieves only around 80%.

Resilience to keyboard/phone displacement Re-
call that the ASD features are coherent within about a key-
sized area. Thus minor displacement of the mobile device or
printed keyboard should be tolerable.We investigate this in-
tuition by placing the smartphone in various ways and test
the effectiveness of the online-adaptation algorithm. The
resulting impact on accuracy is shown in Figure 13. Each
sample counts the localization accuracy averaged over past
50 keystrokes. Localization accuracy may drop to around
80% if the phone is moved by one key’s edge size. With less
displacement (1/3 or 1/2 key), the decrease is much smaller.
Occasionally, accuracy can be disturbed by other factors,
such as user clicking the boarder between keys. However, in
all these cases, UbiK’s online adaptation scheme can quickly
restore the accuracy to above 95% after a few tens of inputs.
When user moves the phone away and tries to restore it to
the original position (“best realignment”), the accuracy is
virtually unaffected. We expect the best realignment to be
a common case user may encounter in practical usage of
UbiK.

Fail-safe mode under bursty interference Bursty in-
terferences pose a greater challenge than noises with a high
but stable power. UbiK’s fail-safe adaptation strives to al-
leviate the impact of bursty noise. Figure 14 verifies the ef-
fectiveness of this approach, where we use a speaker to play
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Figure 10: Confusion matrix of 56
keys on AWK.
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human voice and vary its distance to the keyboard to create
different levels of interference. Fail-safe mode isolates the
keystrokes polluted by bursty interference, thus maintain-
ing above 81% of localization accuracy even if the interferer
is 20 cm away from the keyboard. Accuracy increases to
above 89% as the interferer moves beyond 1 meter. In con-
trast, accuracy is degraded to as low as 22% without fail-
safe adaptation. Notably, the fraction of keystrokes that are
muted by the fail-safe adaptation can be 4% to 11% when
the interference source is 1 or 2 meters nearby, which may
result in undesirable experience for the typist.

Impact of keyboard layout We test UbiK on four
keyboard layouts: US ANSI, UK ISO, AWK and Split key-
board. All keyboards are scaled on letter-size paper while
maintaining the length/width aspect ratio. After scaling,
the inter-key distance is comparable (1 to 2 mm shorter) to
a physical keyboard like AWK. Table 3 shows the average lo-
calization accuracy. Keyboard layouts cause at most 5.7% of
performance variation. In general, keyboards with slightly
smaller key sizes (e.g., US ANSI and AWK) performs better
than those with larger ones (e.g., UK ISO). This is mainly
because of less variation in click positions. Similarly, key-
boards with larger key separation (e.g., the split keyboard)
outperform others. Nonetheless, all keyboards experience
an accuracy of above 92%, and have space to be improved
after augmenting online adaptation.
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Figure 14: UbiK alleviates the impact of bursty in-
terference by adapting to the fail-safe mode.

US ANSI UK ISO AWK Split

Accuracy 96.0% 92.5% 94.7% 98.2%

Table 3: Localization accuracy on different keyboard
layouts.

Power consumption We have used the Monsoon mo-
bile power monitor [24] to profile the power cost of UbiK.
Specifically, we put a Galaxy Nexus phone in three states:
(1) idle with display on; (2) running UbiK but without key
input; (3) running UbiK with fast typing (more than 2 char-
acters per second). Each state is maintained for 1 minute.
The resulting average power consumption in each state is
1049.3 mW, 1160.8 mW, 1244.0 mW, respectively. Thus,
UbiK incurs an additional 194.7 mW on top of the base
power consumption (18.5% of power cost). To put the statis-
tics in perspective, we also conducted measurement when
browsing a CNN website through WiFi, which results in
1233.8 mW of power consumption — comparable to that of
UbiK in active typing mode.

Impact of mobile device models Besides Galaxy Nexus,
we have tested UbiK on alternative hardware platforms:
Galaxy Note and Nexus 7. Both block dual microphone
recording from firmware level. So we can only test with a
single microphone. We find the keystroke localization ac-
curacy on different devices varies slightly, possibly due to
varying microphone quality. On Nexus 7, even with a single
microphone enabled, the accuracy is comparable to Galaxy
Nexus with two microphones. The Galaxy Note’s accuracy
is only 1–3% lower, under the default test setting. Notably,
for Galaxy Nexus, its accuracy can drop by around 5% if a
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U1 U2 U3 U4 U5 U6 U7

PC 1000 2000 3000 1000 500 1000 1000

Onscreen 800 100 1500 100 100 500 500

UbiK > 104 > 5000 > 103 New New New New

Table 4: User reported proficiency with PC, On-
screen (average number of characters per day) and
UbiK (total characters tried). All users have lit-
tle experience with Swype except U3, who inputs
> 2000 characters per day using Swype.

single microphone is used. We plan to test UbiK on other
device models in future.

8.2 User Study
To evaluate the usability of UbiK in practice, we develop

a standard text-entry field trial to compare our approach to
others in a user study.

Experiment setup Seven participants (2 females and 5
males) are recruited from our university. They ran UbiK in
several different environment, including home, library and
office. Each participant completes four sessions, each in-
volving typing regular text sentences and random charac-
ters. The random characters are uniformly selected from
A-Z, digits and symbols on the AWK. The text sentences
are randomly picked from the standard MacKenzie set [25],
which well represents the usage frequency of English char-
acters and words. Each sentence begins with a numerical
index and ends with a random punctuation (, or .).

In the user study, we compare UbiK with three other pop-
ular input methods: a Dell PC keyboard, Google’s Android
on-screen keyboard, and Swype [26], which allows the user
to enter words by sliding a finger across characters, and
then uses a language model to guess the intended word. Be-
fore using each input method, the user is given a 10-minute
warm-up period to familiarize themselves with the keyboard.
Users are given the freedom to choose the solid surface from
wood table, hard-covered paper, plastic board, and metal
cabinet, as they prefer. The whole study is run in an office
environment.

In all trials, participants are instructed to type as they
do on a physical keyboard. They are allowed to correct er-
roneous input as they go. However, if they are unaware of
a mistake until several characters later, they then should
ignore the mistake and continue. This imitates occasional
typos on a physical keyboard [25]. We evaluate the frac-
tion of residual errors as well as the number of characters
(including space and enter keys) per second.

Text input Table 4 lists user proficiency with various
keyboard input methods. It is based on the interviews be-
fore the study. Figure 15 plots user performance when they
enter the benchmark text. Two performance metrics of in-
put speed and error rate are measured.

We make three observations. First, UbiK improves the in-
put speed in real use. For users with less on-screen keyboard
experience (e.g., U2, U4 and U5) , their input speed can be
more than doubled with UbiK. For U1 who is the most pro-
ficient UbiK user, even though she is also a heavy on-screen
keyboard user, her input speed is improved by 83% with
UbiK, with only slight increase of error rate (around 2%).
Notably, two users (U6 and U7) had short nail margins, and
struggled to maintain high input accuracy, and thus they do
not witness much improvement with UbiK.
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Figure 15: Text entry performance of different users
with different keyboards.
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Figure 16: Random text entry performance of differ-
ent users with different keyboards. Swype performs
the same as Onscreen as dictionary is not applicable.

Second, UbiK is easy to use. After a quick warm up, four
new users (U4-U7) can type 1.2–2 characters per second,
slightly smaller than the proficient users.

Third, accuracy is relevant (sensitive) to user proficiency.
The four new users tend to make more mistakes. We gauge
they are less familiar with input tricks. Another factor is
their personal behaviors; they seldom identify and correct
typing errors immediately. We admit UbiK is relatively
more erroneous than other methods. Yet as a new technique,
its error rate is still comparable and tolerable. Moreover, it
is promising to further lower its error rate (as U3 does).
The Swype input method does not noticeably improve per-
formance compared with on-screen, primarily because most
users are unfamiliar with it and needs to waste time pon-
dering about how to move their fingers.

Random character input Figure 16 shows the re-
sults of random text input. As the text involve a substan-
tial amount of digits and punctuations, the on-screen key-
board suffers from high latency in switching between charac-
ter/symbol keyboards. Thus, UbiK easily outperforms on-
screen keyboard for all users. Note however in both text
and random input, UbiK still lags far behind the conven-
tional PC keyboard, partly because of user proficiency, and
partly because of the overhead when users attempt to cali-
brate localization errors from UbiK.
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9. DISCUSSION
As a first attempt to realize mobile text entry through

fine-grained localization, UbiK still bears several limitations
that worth further investigation.

Usability Although the size of the printed keyboard is
the same as a physical keyboard, it cannot emulate the kines-
thetic and tactile feedback that PC users feel. Existing stud-
ies targeting such PC typists pointed out that the removal of
feedback significantly reduces the typing performance [27].
Thus, lack of such feedback is another reason why UbiK’s
input speed is lower than that of a PC keyboard. We also
find that inexperienced users pay substantial visual atten-
tion on the printed keyboard to navigate their fingers to the
correct key position, which further reduces input efficiency.

Tradeoff between accuracy and input speed Local-
ization accuracy has been our primary objective in UbiK. We
observe that even for first-time users, accuracy can be above
95% if the user is encouraged to keep consistent keystroke
patterns, e.g., always using nail margin plus finger tip to
click the keys. However, for inexperienced users, this im-
poses mental and behavioral burden and hampers input speed.
This is the primary reason why the input speed is incompa-
rable to a PC keyboard. An immediate solution is to aug-
ment UbiK with a dictionary based error-correction model.
This is likely to boost robustness to typing inconsistencies,
thus improving input speed.

Robustness in keyboard choices and key clicking It
should be noted that UbiK does not rely on the consis-
tency of click strength to distinguish keys. As mentioned
in Section 5.3, we normalize each ASD feature vector with
its highest-magnitude element so that the keystroke detec-
tion can be resilient to the variation of click strength. After
the normalization, the frequency-domain ASD features are
highly distinguishable (Section 3).

Despite users are encouraged to use the same finger to
click a key as they would in actual typing (Section 5.2), it
is not mandatory. Such operation improves consistency be-
tween the training keystrokes and actually typed keystrokes,
thereby improving the typing accuracy. However, UbiK still
achieves high accuracy in our experiments even if different
fingers are used to press the same key, as long as there is
some consistency (e.g., keep using nail tip to press the key).

Security concerns High accuracy in keystroke local-
ization might raise security concerns. An attacker may be
able to decipher a user’s keystrokes by eavesdropping the
keystrokes and stealthily training UbiK on the keyboard. To
mitigate it, one possible shield is to use an randomized order
for initial training. Without knowing the exact mapping be-
tween the ASD features and the keys, it turns much harder
(e.g., it requires a large amount of eavesdropping samples) to
infer the corresponding keys. Developing counter-measures
to such attacks are beyond the scope of our current work.

Other mobile devices Due to lack of hardware, we
mainly used smartphones throughout our tests. UbiK is
likely to make more difference for small wearable devices like
smart watches and glasses, which we will explore in future.

10. RELATED WORK
Fine-grained wireless localization. Fingerprinting based

localization, the basic idea behind UbiK, is known to achieve
fine-granularity compared with timing-based approaches in

wireless location frameworks. Recent measurement study [9]
revealed that a combination of WiFi access points and FM
broadcast stations’ RSS signatures can enable localization
accuracy at 1 foot level. Wireless multipath fading pro-
file can be extracted using sophisticated virtual antenna ar-
rays, and used as location signature for objects attached
with RFID tags [14]. Frequency-dependent fading charac-
teristics have also been employed [17] for indoor localization
with 1 meter accuracy. In contrast to these wireless location
solutions, UbiK represents the first work to achieve ultra
fine-grained, centimeter scale localization. Further, UbiK
cannot take advantage of any well-designed beacon signal
patterns. Instead, it faces the unreliability and variation of
click patterns even for keystrokes on the same location.

Acoustic ranging and sound source localization.
UbiK is reminiscent of the classical sound source localization
problem, which has a wide range military, scientific and com-
mercial applications. Due to long propagation time, audio
signals’ TDOA or directional-of-arrival can be easily mea-
sured using a microphone array [10]. However, as verified in
Section 3, such non-parametric solutions are extremely vul-
nerable to indoor reverberation effects and unsuitable for
fine-grained localization. Using active audio beacons, it is
feasible to achieve localization accuracy on the order of sev-
eral centimeters [11, 28]. Unfortunately, UbiK’s keystrokes
cannot be generated using audio beacons.

Keyboard eavesdropping. UbiK is closely related with
recent works in keyboard emanation. Asonov et al. [29] in-
vestigated acoustic emanations of a PC keyboard generated
by click sounds. FFT results of keystroke signals are directly
used as features to train a neural network. However, even
with 100 trainings per key, the approach can only achieve
79% accuracy. The problem is revisited in [30] using an
unsupervised learning approach, which heavily rely on dic-
tionary and is unsuitable for real-time keystroke recognition.
SpiPhone [21] uses sensing data from accelerometers to de-
cipher keystrokes, base on an artificial neural network. Sim-
ilar to [29], substantial training (150 instances per key) is
needed and best accuracy is only 80%. However, since these
approaches mainly target security/privacy, even a low level
of accuracy may raise alarming problems.

Customized keyboard for mobile devices. Text-
entry method has been an active research area in mobile
human-computer interaction. Substantial efforts have been
devoted in redesigning the keyboard to improve usability,
i.e., by adaptively zooming the keys [2,5], rearranging char-
acters, leveraging context information or additional virtual
space on the mobile device [3,4]. A class of projection based
mobile keyboards have been studied in the past decade of
HCI research [6–8,31]. They use an infrared or visible light
projector to cast a keyboard on a surface, and then run so-
phisticated optical ranging or image recognition algorithms
to identify the keystroke. Since additional hardware plat-
forms are needed, such solutions are not yet ready to solve
the keyboard bottleneck for mobile devices.

Acoustic touch sensing has been exploited recently in novel
human-computer interaction applications. TapSense [32] ex-
tracts acoustic features from different part of fingers to cre-
ate additional dimensions of input information. Touch&Act-
ivate [33] enables touch sensing on everyday objects, again
through acoustic signals collected from closely attached mi-
crophones. The interactive window project and follow-on
works [34, 35] localize clicks on hard surfaces using surface-
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mounted high sampling-rate microphones. It is unknown if
such approaches work with COTS devices.

11. CONCLUSION
In this paper, we have designed and implemented UbiK,

which enables a novel text-input solution for mobile de-
vices via keystrokes on external, solid surfaces. UbiK is
grounded on experimental evidences that verify the feasi-
bility of fine-grained, centimeter-scale sound source local-
ization, by using the multipath channel profile as location
signatures. These observations are consolidated in a com-
plete system design that realizes accurate detection and lo-
calization of keystrokes, and online adaptation of keystroke
signatures based on user feedback. Our evaluation of UbiK
demonstrates around 95% of localization accuracy across a
variety of settings. A field trial involving new and expe-
rienced users shows that UbiK can significantly outperform
current on-screen keyboards in terms of input efficiency, with
slight increase of error rate. Although a physical keyboard
is clearly preferable, UbiK provides a viable means for small
mobile devices to support text entry.
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