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1 Introduction

Wearable Cognitive Assistance has emerged as a new genre of applications that pushes the
boundaries of augmented cognition. These applications continuously process data from body-
worn sensors and provide just-in-time guidance to help a user complete a specific task. For
example, an IKEA Lamp assistant [6] has been built to assist the assembly of a table lamp. To
use the application, a user wears a head-mounted smart glass that continuously captures her ac-
tions and surroundings from a first-person viewpoint. In real-time, the camera stream is analyzed
to identify the state of the assembly. Audiovisual instructions are generated based on the detected
state. The instructions either demonstrate a subsequent procedure or alert and correct a mistake.

Although Wearable Cognitive Assistance shares the vision of cognition enhancement with
many previous research efforts [35] [39] [9] [49]], its design goals advance the frontier of mobile
computing in multiple aspects. First, wearable devices, particularly head-mounted smart glasses,
are used to reduce the discomfort caused by carrying a bulky computation device. Users are
freed from holding a smartphone and therefore able to interact with the physical world using both
hands. The convenience of this interaction model comes at the cost of constrained computation
resources. The small form-factor of smart glasses significantly limits their onboard computation
capability due to size, cooling, and battery life reasons. Second, placed at the center of com-
putation is the unstructured high-dimensional image and video data. Only these data types can
satisfy the need to extract rich semantic information to identify the progress and mistakes a user
makes. Furthermore, state-of-art computer vision algorithms used to analyze image data are both
compute-intensive and challenging to develop. Third, many cognitive assistants give real-time
feedback to users and have stringent end-to-end latency requirements. An instruction that arrives
too late often provides no value and may even confuse or annoy users. This latency-sensitivity
further increases their high demands of system resource and optimizations.

To meet the latency and the compute requirements, previous research leverages edge com-
puting and offloads computation to a cloudlet. A cloudlet [47] is a small data-center located at
the edge of the Internet, one wireless hop away from users. Researchers have developed an ap-
plication framework for wearable cognitive assistance, named Gabriel, that leverages cloudlets,
optimizes for end-to-end latency, and eases application development [[6] [19] [8]. On top of
Gabriel, several prototype applications have been built, such as Ping-Pong Assistance, Lego As-
sistance, Sandwich Assistance, and Ikea Lamp Assembly Assistance. Using these applications
as benchmarks, [8] presents empirical measurements detailing the latency contributions of in-
dividual system components. Furthermore, a multi-algorithm approach was proposed to reduce
the latency of computer vision computation by executing multiple algorithms in parallel and
conditionally selecting a fast and accurate algorithm for the near future.

While previous research has demonstrated the technical feasibility of wearable cognitive as-
sistants and meeting latency requirements, many practical concerns have not been addressed.
First, previous work operates the wireless networks and cloudlets at low utilization in order to
meet application latency. The economics of practical deployment preclude operation at such low
utilization. In contrast, resources are often highly utilized and congested when serving many
users. How to efficiently scale Gabriel applications to a large number of users remains to be
answered. Second, previous work on the Gabriel framework reduces application development
efforts by managing client-server communication, network flow control, and cognitive engine



discovery. However, the framework does not address the most time-consuming parts of creating
a wearable cognitive assistance application. Experience has shown that developing computer vi-
sion modules that analyze video feeds is a time-consuming and painstaking process that requires
special expertise and involves rounds of trial and error. Developer tools that alleviate the time
and the expertise needed can greatly facilitate the creation of these applications.

This proposal lays out my plan to address these challenges. In order to meet latency require-
ments when utilization is high, restricting the freedom of using resources while taking account
of workload characteristics is needed. The scarce resource can either be the wireless links or
the cloudlets. First, upload bandwidth in cellular networks is limited compared to download
bandwidth and has high variance. Existing wireless infrastructure cannot afford to continuously
stream high-definition videos from many users. I plan to address this problem with application-
level mechanisms that exploit the attributes of the workload to reduce bandwidth consumption.
Second, accelerators, such as GPUs, on cloudlets are both limited and heterogeneous. Due to
the high demands of accelerators from state-of-art computer vision algorithms, the intelligent
discovery of accelerator resources and the usage coordination among applications are required
to serve more users. I plan to work on these problems in an edge computing context to address
how to discover appropriate cloudlets for offload and how to coordinate among applications with
different latency requirements to share scarce accelerators.

In order to address the difficulty of development, I plan to build tools to reduce the expertise
and time needed when creating wearable cognitive assistants. First, state-of-art computer vision
uses Deep Neural Networks (DNNs) for critical tasks, including image classification, object
detection, and semantic segmentation. DNNs champion end-to-end learning instead of hand-
crafted features. The absence of manually created features provides an opportunity to build
developer tools that replace ad-hoc trial and error development process. On the other hand,
DNNs requires a significant amount of labeled data for training. I plan to build tools that help
label examples and automate the creation of DNN-based object detectors.

My thesis is that these efforts can help to scale wearable cognitive assistance. Notably, we
claim that:

Two critical challenges to the widespread adoption of wearable cognitive assistance are
1) the need to operate cloudlets and wireless network at low utilization to achieve acceptable
end-to-end latency 2) the level of specialized skills and the long development time needed
to create new applications. These challenges can be effectively addressed through system
optimizations, functional extensions, and the addition of new software development tools to
the Gabriel platform.

2 Motivation

2.1 Resource Constraints
2.1.1 Characteristics of Wearable Cognitive Assistance Workload

Wearable cognitive assistance applications are both latency-sensitive and compute intensive.
Latency-sensitivity is inherent to applications. The arrival rate of instructions needs to match
the time for humans to execute these instructions. For instance, humans can recognize a person’s
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Figure 1: Application Latency Requirements
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Figure 2: Mean Latency Breakdown - Cloudlet vs. Cloud for Phone over WiFi

face using around 1000 ms [34]. For a digital assistant that reminds a person who a person is,
the speed needs to be much faster than this value.

The high compute demand of wearable cognitive assistance comes from the processing needs
of modern computer vision algorithms. The accuracy of many important computer vision tasks,
such as object detection, image segmentation, and face recognition, have been greatly improved
since the advent of deep neural networks (DNNs). While accuracy has improved, the computa-
tion demand has also increased. Deep neural networks have tens to hundreds of perceptron layers
and millions of parameters. Both DNN train and inferencing involves millions of multiply-and-
add operations, which are implemented as matrix multiplication. These large matrix multiplica-
tions have a high computational demand.

Previous measurements on wearable cognitive assistants provide quantitative insights into
both latency sensitivity and computation intensity. Figure [I] shows latency requirements for
seven different applications. These applications serve a variety of purposes, from guiding a user
how to aim in a game of pool to teaching a user how to make a sandwich. Chen et al. [8] describe
how these bounds are obtained. These latency requirements highlight the latency-sensitivity of
wearable cognitive assistants.

Figure [2] shows the time breakdown of these assistants. For the cloudlet case (left bars for
each application), relatively little time is spent on network transmission, which is the benefit
of edge computing. When offloading to the cloudlet, the server compute time consists of a
significant portion, if not the most significant part of the end-to-end latency. For applications that
use DNNs to process complex scenes, for example, Face and Sandwich, the server computation
time dominates.



2.1.2 Wireless Network Characteristics

The sensed data, e.g. images and videos from mobile devices, are transmitted to a cloudlet
through wireless communication. While IEEE 802.11 protocol is widely-used at home and en-
terprise settings, the cellular network, particularly LTE provides a better experience with its
always-on ubiquitousness and large area coverage. To this end, I will focus on LTE network as
the primary wireless communication protocol in the rest of my work.

LTE has unique characteristics in both latency and bandwidth. While previous works [28]] and
[21] have experimentally measured LTE’s latency for mobile applications, the influence of LTE’s
bandwidth and capacity on wearable cognitive assistance applications is mostly unexplored.

The LTE uplink bandwidth is both limited and highly variant. LTE release 8 has a theoretical
a peak uplink data rate of 75 Mbps compared to 300 Mbps peak downlink data rate. For LTE-
Advanced, a major step toward 5G, the peak uplink and downlink data rate are 1500 Mbps and
3000 Mbps respectively. In addition, these theoretical peak data rates can only be achieved under
idealized set-up condition. For example, the LTE cell in test needs to be well isolated from other
cells while the test mobile device needs to be close to the base station. Actual deployment has
less bandwidth available [[10]. For a single user, the available bandwidth can be even less due
to sharing. For example, a 2012 study measured median LTE downlink and uplink bandwidth
in US commercial network to be 13 Mbps and 6 Mbps respectively [30]. In 2017, the highest
average upload bandwidth is 18 Mbps among providers in US [40]. In addition, LTE bandwidth
has high variance [53]]. [30] observed high variation on LTE throughput not only for different
users at different locations, but also for the same user at the same location across different runs.

Gabriel applications put a high bandwidth demand on the network since they continuously
stream video data to cloudlets over wireless links. As a comparison, Netflix recommends an
internet connection speed of 5 Mbps to watch its highly compressed HD video content. Gabriel
applications would consume more bandwidth due to on-the-fly compression. Hundreds of users
simultaneously streaming high-definition videos could easily saturate today’s LTE uplink capa-
bilities [43]. Therefore, effective reduction of the bandwidth consumption is essential to support
concurrent running of many Gabriel applications.

2.2 Accelerators on Edge Nodes

The computation capability of cloudlets, especially hardware accelerators, also becomes a bot-
tleneck with many users. The high demand for accelerator resources comes from the widespread
use of DNNs to solve computer vision tasks. DNNs’ superior learning ability enables them to
advance the state-of-art accuracy. The large capacity to learn comes from the sheer number of
model parameters. For example, the widely-used image classification network ResNet-101 [25]]
has more than 42 million parameters. Another classifier network Inception ResNet V2 which
achieves higher accuracy on ImageNet [13] has more than 53 million parameters [29]. For more
sophisticated tasks, for example object detection, additional layers are needed beyond image
classifiers, resulting in even more parameters. In addition, these networks are deep, with tens to
hundreds of layers in a sequence. Computational dependencies exist among the bottom and top
layers. The combined effect of a large number of both parameters and layers is the high com-
putational demands when using DNNs for inference. In order to shorten computational latency,
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Figure 3: Development Workflow

hardware accelerators that can exploit parallel execution, for example GPUs, are commonly used
for both DNN training and inference. ASIC accelerators to further improve speed have also been
developed. For example, Google has deployed Tensor Processing Units (TPUs) into their cloud
to meet DNNs’ computational demands [33]].

Despite many efforts in hardware design, the cost of DNN accelerators remains high. For ex-
ample, a Nvidia Pascal Titan X graphic card, a top-of-line GPU for DNNs, costs around $1200 [41]].
Nevertheless, it can only run the object detection network Faster-RCNN with ResNet101 at a
speed of fewer than 10 frames per second (FPS) [29]]. Although large batch sizes could theo-
retically improve the throughput, they often sacrifice application latency and therefore are not
suitable for many Gabriel applications. To support more users with high demands on accelera-
tors, Gabriel framework needs to efficiently manage and share scarce and expensive acceleration
resources among concurrent users to reduce the cost of deployment.

2.3 Difficulty of Development

Gabriel applications are difficult to develop. Not only is the development process slow, but
specialized computer vision experience is also needed. It took a researcher four months to build
his first cognitive assistant for assembling LEGO pieces [6]. The majority of time is spent on
learning the computer vision techniques and selecting robust algorithms to use through trial
and error. New developers would face the similar obstacles when building these applications
from scratch. As a result, the number of wearable cognitive assistants available is quite limited.
Therefore, Gabriel needs to be extended with a toolchain to reduce the difficulty of development.

The overall development workflow of wearable cognitive assistance is shown in figure 3]
After a use case is identified, developers would need to identify meaningful visual states that can
be detected using computer vision. In the meantime, a task is divided into steps based on the
use case and detectable visual states. Task procedures could be changed to reduce the difficulties
of CV checks. In fact, since there is a human in the loop, relying on humans to do what they
are good at is the main reason that wearable cognitive assistance can be implemented without
solving perception and planning problems intrinsic to robotics. Task procedures together with
error states form a task model. Developers implement the application according to the task
model. After initial implementation, test runs and measurements are conducted to evaluate the
robustness of computer vision checks and end-to-end application latency. This process is iterated



until developers are satisfied.

Among all the development procedures, creating the computer vision checks to detect user
states consumes the most of development time and requires computer vision expertise and ex-
perience. With the adoption of DNNs, developers no longer need to spend days to select and
tweak handcrafted features. Instead, the entire model is trained end-to-end using labeled data.
However, DNNs, with millions of parameters to train, requires a significant amount of training
data. Collecting and labeling data are time-consuming and painstaking. Besides, to craft and
implement a DNN by hand is not trivial. Significant machine learning background is needed to
tweak network architectures and parameters. Therefore, developer tools are needed to both help
label the data and create deep neural networks.

In summary, implementing the workflow of cognitive assistance takes time and efforts. Ad-
hoc implementation requires a team of domain experts, developers and computer vision experts.
Such development model cannot scale to thousands of applications. Therefore, Gabriel needs to
be extended with tools to reduce the effort of creating wearable cognitive assistants.

3 Bandwidth Reduction

Gabriel applications continuously stream sensor data to the cloudlet. The richer a sensing modal-
ity is, the more information can be extracted. Visual data from cameras is one of such rich
sensing modalities that wearable cognitive assistance leverages. However, the last hop wireless
bandwidth, especially LTE bandwidth cannot support thousands of users simultaneously stream-
ing high definition videos. Therefore, to effectively scale wearable cognitive assistance, we need
to reduce the bandwidth consumed. There are three techniques I will explore to reduce the band-
width cost by exploiting the unique properties of the workload. We have shown the effectiveness
of these techniques with drone footages. Further experiments with first-person videos will be
done to show their effectiveness for wearable cognitive assistance.

3.1 Early Discard

Early discard refers to the technique that filters and discards contents in early stages of compu-
tation. An example system that uses early discard is an unindexed search system [48]. In the
mobile computing context, [27] explored using image-level simple computer vision algorithms,
for example blur and color detection, to suppress transmission of uninteresting video frames.

In Gabriel applications, an efficient early discard system that filters out uninteresting frames
before transmission can reduce the bandwidth consumption. For example, in the Lego assistant,
all the assembled Lego pieces are placed on a Lego board with black boundaries. Some frames
do not contain the Lego board due to user movement. Without further analysis, the application
knows these frames do not contain useful information since the board is not present. If an efficient
contour detection of black boundaries can be performed on the wearable device, the application
can save the unnecessary bandwidth consumed to transmit the uninteresting frames.

There exists a tradeoff between computation and network transmission for early discard. To
one end, if the wearable device is powerful enough to perform all the computation on-device
within latency constraints, the bandwidth cost would be minimal because there is no need to
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Figure 4: Early Discard Pipeline.

offload the computation. To the other extreme, if the wearable device is very weak, all the sensor
data then needs to be shipped to the cloudlets for processing. In fact, image compression can
be thought as an early discard technique at the pixel level. It uses the computation onboard to
remove the duplicate data sent over the network.

To explore the effectiveness of early discard, we conducted experiments in a small drone
setting. Drones typically can carry more computational power than wearable devices. Therefore
they can be thought of futuristic wearable devices with large computation capability. In my
thesis, I will run similar experiments on wearable devices with first-person videos. Below we
will present our experiments on drone videos to demonstrate the effectiveness of early discard.

As shown in Figure @] we envision a choice of weak detectors being available as early dis-
card filters on a drone, with the specific choice of filter being mission-specific. We use image
classification as early discard filters on the drone: it is not necessary to know exactly where in
the frame a relevant object occurs. This suggests that MobileNet would be a good choice as a
weak detector. Its speed of 352 ms per frame on Nexus 6 yields less than 3 fps. However, its
speed of 13 ms per frame on Jetson yields more than 75 fps. If Jetson-class hardware was to be
available on future smartphones, MobileNet would be usable at a full frame rate. We therefore
use MobileNet on the drone for early discard in our experiments.

Our experiments on the EARLYDISCARD strategy used benchmark tasks suite described in

figure [5| We used Nvidia Jetson TX2 as the drone platform. We use both frame-based and event-
based metrics to evaluate the MobileNet filters. These experiments demonstrate that significant
bandwidth saving can be achieved while maintaining final detection accuracy through interesting
frames selection with filters running on the mobile device.
Drone Filter Accuracy: The output of a drone filter is the probability of the current tile be-
ing “interesting.” A tunable cutoff threshold parameter specifies how interesting is “interesting
enough” for transmission to the cloudlet. All tiles, whether deemed interesting or not, are still
stored in drone storage for post-mission processing.

Events (such as detection of a raft in T3) occur in consecutive frames, all of which contain
the object of interest. A correct detection of an event is defined as at least one of the consecutive
frames being transmitted to the cloudlet. Blue lines in Figure [6] shows how the event recalls of
drone filters for different tasks change as a function of cutoff threshold. As the figure shows, the
MobileNet DNN filter is able to detect all the events for T1 and T4 at a high cutoff threshold.
For T2 and T3, the majority of the events are detected. Achieving high recall on T2 and T3 (on
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Task | Goal Source Attributes Subset Subset
T1 People  in | Okutama 33 videos 9 videos 6 videos
scenes of | Action 59842 fr 17763 fr 20751 frames
daily life Dataset [3]] 4K @30 fps
T2 Moving cars | Stanford 60 videos 16 videos 14 V1de95 92378 fr
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Dete- | Avg | Total Avg Peak
Total cted | Delay | Data | B/W B/W
Events | Events (s) (MB) | (Mbps) | (Mbps)
Tl 62 | 100 % 0.1 441 5.10 10.7

T2 11 73 % 4.9 13 0.03 7.0
T3 31 90 % | 12.7 93 0.24 7.0
T4 25 100 % 0.3 167 | 043 7.0

Figure 7: Recall, Event Latency and Bandwidth at Cutoff Threshold 0.5

the order of 0.95 or better) requires setting a low cutoff threshold. This leads to the possibility
that many of the transmitted frames are actually uninteresting (i.e., false positives).
False negatives: As discussed earlier, false negatives are a source of concern with early discard.
Once the drone drops a frame containing an important event, improved cloudlet processing can-
not help. The results in the third column of Figure [/| confirm that there are no false negatives
for T1 and T4 at a cutoff threshold of 0.5. For T2 and T3, lower cutoff thresholds are needed to
achieve perfect recalls.
Result latency: The contribution of early discard processing to total result latency is calculated
as the average time difference between the first frame in which an object occurs (i.e., first occur-
rence in ground truth) and the first frame containing the object that is transmitted to the backend
(i.e., first detection). The results in the fourth column of Figure [7| confirm that early discard
contributes little to result latency. The amounts range from 0.1 s for T1 to 12.7 s for T3. At the
times cale of human actions such as dispatching of a rescue team, these are negligible delays.

Although the general approach of early discard would apply for wearable cognitive assis-
tance, how to apply this technique to wearable devices still needs investigation. First, wearable
devices in general have even less general-purpose computation capabilities. Due to the small
form factor and heat dissipation constraints, the mobile CPUs in wearable devices are optimized
for power instead of performance. In fact, many smart glasses today rely on a user’s smartphone
to process information. For instance, one of Google Glasses’ main use cases when it was first re-
leased is to display notifications from smartphone applications, such as CNN and EverNote [51]].
Second, there is a strong trend to put hardware DNN accelerators into embedded devices to per-
form some analysis of visual data. There are many efforts from both industry and academia.
For example, Microsoft HoloLens has a special Holograhic Processing Unit [44] to map the en-
vironment in 3D. Recently released Google Pixel 2 smartphone have visual cores built-in for
future-proofing although not all of them are being actively used now [3]]. In academia, there are
strong interests in DNN compression and optimization for embedded devices so that the infer-
ence can run natively on device [23] [24]. Therefore, it is likely that smart glasses’ computation
capabilities, especially their capabilities of executing DNNs, would vary greatly.

I would like to further explore how to create filters for a variety of heterogeneous smart
glasses with or without accelerators in my thesis. I plan to formulate the problem as an opti-
mization problem that optimizes for the least amount of bandwidth consumption constraint by



the application latency requirement. To its simplistic form, the problem can be written as

minimize AverageDataTransmitted PerImage
subject to OnBoardProcessingTime
+ NetworkTransmissionTime

+ ServerComputationTime < Application LatencyRequirement

I also plan to design tools that will generate filters given these constraints.

3.2 Just-in-time Learning

Just-in-time-learning (JITL) refers to the technique that tunes the processing pipeline to the char-
acteristics of the current scenario in order to reduce transmitted false positives from the client,
therefore reduce wasted bandwidth. When training DNNs to recognize and detect objects, ma-
chine learning experts do their best to obtain training examples from the same distribution of the
test data. In other words, best efforts are made to acquire training examples from environments
similar to test environment in terms of lighting, occlusion, and many other aspects. However, as
a Gabriel application could be used in any environment, it is not realistic to assume all of them
can be truthfully represented by the training data. For test environment that does not look similar
to the training environment, the detection accuracy could be lower. Just-in-time-learning aims to
alleviate the generalization problem by making each test environment represented in the training
samples. Such goal can be achieved by quick collecting a small number of examples drawn from
the actual test environment and iteratively training an existing model with the newly collected
data in a short time.

I plan to focus on mechanical assembly tasks when applying just-in-time learning to wear-
able cognitive assistance. For mechanical assembly tasks, the environment a user is in usually
does not change significantly. For example, a user might sit in front of a desk for most of the
time. The relatively stable environment gives us opportunities to leverage the human in the loop
to provide false positive examples. Before the application starts, a cognitive assistant could ask
the user to look around her environment with the assembly kits put away for a short period of
time. By construction, any positive predictions are false positives. They are excellent negative
training examples because they are taken in the actual test environment. I plan to explore mul-
tiple methods to make use of these newly collected data. First, feature matching could be used
to identify subsequent false positives. Specifically, a false positive feature pool can be built for
the particular test environment with the newly collected negative data. For each prediction at
application runtime, a matching is performed to see if it is close enough to items in the false
positive feature pool. Second, researchers have shown positive results from train image segmen-
tation DNNs with a small number of examples for a few iterations to fit the model better to the
test environment. I plan to explore similar techniques in object detections.

3.3 Context-awareness

The essence of this approach is to leverage unique attributes of the current task to improve the
speed and accuracy of image processing on the mobile device. By definition, this approach is ad
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Precision using | Precision using | Recall

DNN (%) color filter (%) | (%)
Video 1 | 92.4 95.3 89.1
Video 2 | 51.9 76.1 90.0
Video 3 | 41.3 84.3 88.6

(a) Accuracy

Jetson Joule Nexus 6
DNN | Color | DNN | Color | DNN | Color
Video 1 6.2 9.8 27.5
Video 2 | 13 6.3 37 9.7 352 26.3
Video 3 9.5 12.3 36.1

(b) Processing time (ms)

Figure 8: Detection Results on T3 Using Color Filters

hoc in character. However, the wins can be significant. Consider the fuchsia colored screw in
RibLoc cognitive assistant as an example. Since the color of the screw is rarely seen in everyday
objects, cheap color filtering instead of DNNs can be used to filter interesting frames.

To demonstrate the effectiveness of this strategy, we apply it in the drone context using a
simple color filter in T3. In each raft search video, we randomly pick a frame that contains a
raft (true positive), and obtain the color of the most distinctive region of the raft. Using the hue,
saturation, and value (HSV) color space attributes of this region, we apply a color filter to all the
other frames of the video. If a significantly large area of a frame passes this filter, the frame is
marked as positive. Otherwise, it is marked as negative.

Figure [§| shows the results of using this approach on three representative videos in T3. Keep-
ing recall fixed at a high value (fourth column of Figure([§fa)), the second and third columns show
the precision achieved using a DNN and a color filter. For all three videos, the precision using
a color filter is better than the precision using a DNN. The difference is modest for Video 1, but
considerable for Video 2 and Video 3. In other words, the context aware approach is consistently
more accurate. This improvement in accuracy does not come at a sacrifice in speed. On the con-
trary, Figure [§(b) shows that the DNN on the Jetson takes 2—3 times the processing time of the
color filter. On the Joule and the Nexus 6, it takes 8—10 times. These results show the high value
of using context-aware knowledge. What the DNN provides is generality, combined with rea-
sonable accuracy. At the beginning of a mission, when little is known about the context-specific
search attributes of the target, the DNN is the only choice. As the mission progresses, the early
results may hint at the attributes of a highly effective and cheap context-aware filter.

Although Gabriel applications do not have a human in the loop to specify filter parameters,
context-awareness can still be applied to wearable cognitive assistance. In fact it could serve
both as a mean to reduce bandwidth consumption and as a method to reduce server computation
latency. To achieve the former goal, we can generate a suite of early-discard filters at training
time using different algorithms. When the application first starts, we can ask the user to look
around her environment and show us a few objects that will be used. All early-discard filters
can be evaluated during this “warm-up” time by checking how many false positives and false

11



negatives they produce. A filter that performs the best in this test environment will be selected
for application usage. To be able to achieve such context-awareness, many challenges exist,
e.g. what metrics to use to evaluate these early discard filters, how to quickly identify the best
one to use, where should the computation happen, and how to efficiently transmit context-aware
updates to the client. I plan to explore these questions in my thesis. In addition, such dynamic
selection of CV algorithms can be applied for processing at the edge nodes as well. We could
build upon the multi-algorithm acceleration approach described by [8] to dynamically select a
cheap algorithm to use from auto-generated models in order to reduce processing latency.

4 Gabriel Deployment System

Previous research on wearable cognitive assistance [8] has focused on meeting application la-
tency requirements and assumed abundant resources on the cloudlets. However, when there are
many users in the system and the utilizations of system resources are high, both the compute
and the memory at the cloudlets can become scarce. Reduction of the application footprint on
cloudlets is needed in order to scale better.
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Figure 9: Container and Virtual Machine Virtualization on Cloudlets

Virtual machines (VMs) have been used to provide isolation among edge node tenants [19]).
While VMs virtualize at the hardware level and provide strong isolation among tenants, they
also have a large footprint since each virtual machine has its own kernel. In the meantime,
some applications do not need the strong isolation provided by VMs. For example, applications
published by the same developer or company would have stronger trusts about the integrity of
the software. Therefore, for these applications, using more lightweight virtualization constructs,
for instance, containers, can help reduce the application footprint on cloudlets.

Figure [9] shows an edge node implementation that combines lightweight container virtual-
ization with strongly isolated virtual machines. It adopts a Container-on-top-of-VM approach.
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Application providers on the cloudlets can create container clusters for managing multiple appli-
cations or instances of an application using the lightweight containers. In the meantime, different
providers are isolated by VMs for better control. The edge node deployment system also sup-
ports applications to use a combination of virtual machines and containers. For example, an
application might have some components in Windows VMs while other components run inside
Linux containers. When this combination of virtualization is used, the system provides a DNS
service to help resolve hostnames.

# Fo OpenStack Heat Template
heat template™ ion: 2013-05-23
description: Templa deploy a single compute instance
parameters:
image:
type: string
label: Image name or ID
description: Image to be used for compute inst
default: Gabriel@20817 Use both keywords
flavor: to indicate a mix of

type: string !
label: Flavor VMs and containers

description: Type of instanc
default: ml.xlar

|Containers: |<
# Follow Docker Compose File Format
version: '3’
services:
lego:

image: registry.cmusatyalab.org/junjuew/gabriel-container-registry:apps

entrypoint: /bin/bash -c "/bin/bash -ex /run.sh lego"

environment:

CLOUDLET_NAMESERVER_IP: ${CLOUDLET_NAMESERVER_IP}

or) to be used

Figure 10: Application Deployment Template with Virtualization Type Specified

In order to specify virtualization techniques to use, developers only need to modify their
existing orchestration templates to include their choice of virtualization. The system’s annotation
uses YAML [4] and follows the convention of orchestration frameworks, including OpenStack
Heat and Docker Swarm. Figure [I0]shows an application configuration file that adopts a mixed
of virtual machine and container virtualization. Components with different virtualization are
separated into different sections. Developers mark each section with the virtualization technique
they want to use. Specifications inside each section correspond to the template consumed by the
underlying orchestration frameworks.

5 Gabriel Acceleration Framework

DNNs have been widely adopted as the de facto algorithms to use for analyzing the image and
video data. Therefore, running DNNs to analyze images is a common, if not the most com-
mon, workload Gabriel needs to support. Due to the parallel nature of DNN computation, such
workload can be accelerated by special hardware, including GPUs, FPGAs, and custom ASICs.

On cloudlets, due to physical constraints and economic decisions, we are likely to see a wide
range of heterogeneous accelerators. Some edge deployment may have a cluster of custom ASIC
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DNN accelerators with proprietary drivers. Others might use commodity GPUs. Some may not
have any accelerators at all. Such heterogeneity of acceleration capabilities has a direct impact
on application latencies and the number of users an edge node can serve. While hardware capa-
bilities vary, applications’ needs on acceleration resources vary as well. Applications may use
DNN s of different sizes based on the complexity of their task. For example, the Face Recognition
Assistant developed uses a much smaller network than the Sandwich Assistant in [8]]. As a re-
sult, the Face Assistant does not need a GPU to meet its latency requirement while the Sandwich
Assistant does.

Given the heterogeneity in both hardware capabilities and application demands, I plan to
study how to effectively federate cloudlets with different accelerators to better serve applications
with different needs. The heterogeneity can be both inter-cloudlet and intra-cloudlet. I plan to
address inter-cloudlet heterogeneity from a cloudlet discovery perspective. Specifically, I want
to focus on how to maximize the number of users served by carefully discovering and select-
ing appropriate cloudlets to offload at run-time based on the availability of accelerators, their
utilization, and the potentials to meet latency requirements. For instance, different applications
from the same mobile client may be served by different cloudlets to accommodate their needs
for accelerators and the requirements of latency.

In addition, within a cloudlet, there can be machines with and without accelerators. Virtual-
ization for accelerators is difficult to develop and often cannot be easily adapted to new hardware.
Instead, I plan to study how to enable the sharing of accelerators within a cloudlet on the appli-
cation layer. One approach I have implemented is to expose the accelerator as an HTTP endpoint
of fixed functions. This method is similar to model serving systems described in [42] [11]. Such
approach faces a trade-off between throughput and latency. Specifically, the more frames a server
batches, the higher throughput the server can achieve. I plan to explore such trade-off in wearable
cognitive assistance context.

6 Gabriel Development Tool for Object Detection

Existing ad-hoc approach to develop wearable cognitive assistance not only takes a long time,
but also requires computer vision expertise. A developer new to wearable cognitive assistance
would need to spend months learning computer vision basics and acquire intuitions to determine
what is achievable before developing an application. For instance, a researcher mentions the first
application developed to help a user assemble LEGO pieces took him more than four months.
Figure 3| shows the ad-hoc development process. The most critical step in building wearable
cognitive assistance is to identify task steps and the visual states of task steps. For example, for
the Lego wearable cognitive assistance [8], the task steps are the sequence of shapes needed to
achieve the final assembled lego shape. The visual states to recognize are the current shapes on
the lego board. Identifying visual states and task steps takes significant time and expertise due to
several reasons. First, a developer needs to be familiar with the state-of-art of computer vision
algorithms to determine what visual states can be recognized reliably. Second, identifying task
steps requires domain knowledge. Third, when visual states become too hard for CV, developers
need to adjust the task steps to use other methods for confirmation. Often a redesign of task steps
is required to compensate computer vision. For instance, when designing the RibLoc application,
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a redesign of the task steps involves asking the user to read out a word on the gauge instead of
performing optical character recognition on the lightly-colored characters.

I plan to work on building Gabriel development tools in my thesis. I want to focus on pro-
viding automation tools for the most time-consuming procedures in the development workflow
— building vision checks.

TPOD (Tool for Painless Object Detection) is a web-based tool I developed to help quickly
create DNN-based object detectors. It provides a tracking-assisted labeling interface for speedy
labeling and transfer learning-based DNN training and evaluation backends that abstract the nu-
ances of DNNs. Using TPOD to create object detectors is straight-forward. A user would first
upload short videos of the object collected from varying lighting conditions and perspectives.
Then, the user would label these objects using TPOD’s labeling interface. TPOD assists labeling
by tracking the labeled object across frames. Augmenting training data with synthetically gener-
ated data is also supported. A user then can start training from the web interface. TPOD backend
uses transfer learning to finetune an object detector DNN from publicly available networks that
have been trained with millions of images. When the training is done, a user can download the
object detector as a container image to run the trained models for inference. TPOD also provides
interfaces for evaluating and testing trained DNNGs.

The initial prototype of TPOD has been used by researchers and students to build wearable
cognitive assistance. For example, a group of master students in CMU mobile and pervasive
computing class successfully used TPOD to build an assistant for using AED machines.

Going forward, I plan to open-source the tool after following optimizations. First, TPOD’s
backend needs to be easily extensible. With increasingly many DNN-based object detectors de-
veloped in the computer vision community, adding a new object detector to TPOD should be
made easy. This design goal requires well-modularized DNN backends with clean and easy-to-
use interfaces to query labeled datasets for training, standard serialization format to download,
and stable APIs to detect objects using the trained models. Second, TPOD’s labeling interface
should be well isolated from the automated DNN training backend. With such isolation, indi-
viduals looking for labeling tools can leverage TPOD’s front-end without setting up the training
backend. This isolation requires serializing labeled datasets using widely-used formats, for ex-
ample, Pascal VOC annotation format. Third, TPOD should be packaged well for installation. I
plan to containerize TPOD to make it easy for others to install.
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7 Timeline

Timeline Plan
2018 Summer | May - Aug | Apply Bandwidth Reduction to Gabriel Applications
Sept - Nov Complete Gabriel Acceleration Framework
2018 Fall . .
Dec MobiSys submission
. Jan - April Build Gabriel Development Tools
2019 Spring May SEC submission
2019 Summer | May - Aug Thesis Writing
Sept - Nov Finish thesis dissertation
2019 Fall Dec Thesis Defense

8 Related Work

8.1 Edge Computing

Gabriel applications offload computation to a cloudlet, a small data-center at the edge of the in-
ternet [47]. The high bandwidth and low latency offered by cloudlets [[17]] [28] lay the foundation
of wearable cognitive assistance [19]. Previous research has worked on VM synthesis [18] to en-
able rapid provisioning of applications onto a cloudlet. In addition, user mobility is supported
through VM handoff [20], which migrates user states from one cloudlet to another. These pioneer
work into cloudlet together with decade-long research into computational offload [12] [[16]] [14]]
provides the infrastructure support that makes wearable cognitive assistance applications feasi-
ble. Previous measurement of edge computing’s impact on mobile applications tested compute-
intensive and latency-sensitive applications when network utilization is low [8]]. This work re-
laxes such assumption and focuses on supporting more users when the resource utilization is
high.

8.2 Cognitive Assistance Applications

This work builds on top of existing efforts into creating wearable cognitive assistance [[19] [[7] [8]].
While previous work has focused on identifying latency requirements and system optimizations
to meet latency constraints, this work focuses on making wearable cognitive assistance econom-
ically feasible. Other earlier works have also explored providing cognitive assistance to users.
For instance, [39] created a navigation system for the blind twenty years ago. Rhema [50] used
Google Glass to help people with public speaking. [52] provided people with aphasia conversa-
tional cues on a head-worn display.

Most of these applications run solely on mobile devices and are highly constrained by the
limited compute budget. Gabriel applications use an offload approach to leverage beefy static
computational resources. Gabriel applications can use state-of-art DNN-based computer vision
algorithms to perform complex CV tasks.
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8.3 Mobile System Support for Computer Vision Workload

With the proliferation of smartphones and cameras, many research works have studied mobile
system supports for computer vision workload. [37] designed and built a system to efficiently
support many concurrent computer vision applications on a mobile device. [36] built a custom
wearable device that supports continuous inference on sensor data using a low power budget.
More recently, many more efforts have been focused on DNNs. [55] and [31] accelerated DNN
inference on commodity mobile GPUs. [22] looked at where to schedule DNNs of different
accuracy and speed tradeoff under resource constraints. [38] executed convolutional layers in
analog domain before sensor read-out to reduce power consumption.

Besides, many researchers have worked on algorithmic optimizations to reduce DNN com-
putation. [23]] [32] compressed DNN models by pruning insignificant weights. [24] showcased
a DNN hardware accelerator exploiting model compression techniques. [54] [15] studied weight
quantization for faster inference. [26]] [46] designed DNNs with depth-wise separable convolu-
tions to decrease DNN parameters and increase inference speed on mobile devices.

While Gabriel applications can benefit from improvement on mobile system support for
DNNs, we recognize the lasting trend in the performance gap between mobile devices and static
elements. The offload approach we adopt enables us to leverage powerful computational re-
sources at the edge of the internet. The improvement in mobile system support for DNNs can
help us build better early discard filters and perform more dynamic adaptation to user context.
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